Home / 2023-May-Mathematics_analysis_and_approaches_paper_3__TZ2_HL

Question 1

This question asks you to examine the number and nature of intersection points of the graph of $y = \log_a x$ where $a \in \mathbb{R}^+$, $a \neq 1$ and the line $y = x$ for particular sets of values of $a$.

In this question, you may either use the change of logarithm base formula
\[
\log_a x = \frac{\ln x}{\ln a}
\]
or a graphic display calculator “logarithm to any base feature”.

The function $f$ is defined by
\[
f(x) = \log_a x \quad \text{where } x \in \mathbb{R}^+ \text{ and } a \in \mathbb{R}^+, \quad a \neq 1.
\]

Topic – SL:2.6

(a) Consider the cases $a = 2$ and $a = 10$. On the same set of axes, sketch the following three graphs:

\[y = \log_2 x\]
\[y = \log_{10} x\]
\[y = x\]

Clearly label each graph with its equation and state the value of any non-zero $x$-axis intercepts.

In parts (b) and (c), consider the case where $a = e$. Note that $\ln x = \log_{e}x$.

Topic – SL:6.2

(b) Use calculus to find the minimum value of the expression $x – \ln x$, justifying that this value is a minimum.

Topic – SL:6.2

(c) Hence deduce that $x > \ln x$.

Topic – SL:2.6

(d) There exist values of $a$ for which the graph of $y = \log_{a}x$ and the line $y = x$ do have intersection points. The following table gives three intervals for the value of $a$.

By investigating the graph of $y = \log_{a}x$ for different values of $a$, write down the values of $p$, $q$ and $r$.

In parts (e) and (f), consider $a \in \mathbb{R}$, $a \neq 1$.

For $1.4 \leq a \leq 1.5$, a value of $a$ exists such that the line $y = x$ is a tangent to the graph of $y = \log_{a}x$ at a point $P$.

Topic – AHL:6.10

(e) Find the exact coordinates of $P$ and the exact value of $a$.

Topic – SL:2.6

(f) Write down the exact set of values for $a$ such that the graphs of $y = \log_{a}x$ and $y = x$ have

(i) two intersection points;

(ii) no intersection points.

▶️Answer/Explanation

Solution: –

(a)

clearly labelled graphs of $y = log_{e} x$ and $y = log_{10} x$ with correct domain,
asymptotic behaviour and concavity evident

correct relative positions of the two log graphs both above and below the x-axis

(1,0) indicated (coordinates not required)

correct graph of $y = x$

(b)

$\frac{d}{dx}(x-ln~x)$

$=1-\frac{1}{x}$

attempts to solve their $\frac{dy}{dx}=0$ for x

$1-\frac{1}{x}=0\Rightarrow x=1$

(when $x=1$,) $x-ln~x=1$

EITHER

$\frac{d}{dx}\left(1-\frac{1}{x}\right)$

$=\frac{1}{x^{2}}$

$\frac{1}{x^{2}}>0$ (when $x=1$)

hence x-ln~x has a minimum value of 1

OR

for $(0<)x<1, 1-\frac{1}{x}<0$

for $x>1, 1-\frac{1}{x}>0$

hence $x-ln~x$ has a minimum value of 1

(c)

EITHER
\[x-ln~x\ge1(x\in\mathbb{R}^{+})\]
\[x-ln~x>0(x\in\mathbb{R}^{+})\]
THEN
so $x>ln~x$

(d)

Interval Number of intersection points

$0<a<1$ $p=1$

$1<a<1.4$ $q=2$

$1.5<a<2$ $r=0$

(e) METHOD 1

EITHER

$y = log_{a} x$

$\frac{dy}{dx}=\frac{1}{x~ln~a}$

attempts to solve $\frac{1}{x~ln~a}=1$ for x

OR

$y = x-log_{a} x$

$\frac{dy}{dx}=1-\frac{1}{x~ln~a}$

attempts to solve $1-\frac{1}{x~ln~a}=0$ for x

THEN

\[x=\frac{1}{ln~a}~OR~x~ln~a=1~OR~ln~a=\frac{1}{x}~OR~ln~a^{x}=1~OR~\frac{1}{a^{x}ln~a}=1\]
at
\[x=\frac{1}{ln~a},~log_{a}x=x\]
attempts to solve
\[\frac{ln~x}{ln~a}=\frac{1}{ln~a}~OR~ln~x=1~OR~\left(e^{\frac{1}{x}}\right)^{x}=x\]
for x

x=c

coordinates of P are (c,c) (accept x=c, y=c)
attempts to solve
\[\frac{1}{ln~a}=c~OR~log_{a}c=c\] for a analytically

$ln~a=\frac{1}{c}$ OR $a^{c}=c$

\[a=e^{\frac{1}{e}}\]

METHOD 2

EITHER

$y=log_{a} x$

$\frac{dy}{dx}=\frac{1}{x~ln~a}$

attempts to solve $\frac{1}{x~ln~a}=1$ for x

OR

$y=x-log_{a} x$

$\frac{dy}{dx}=1-\frac{1}{x~ln~a}$

attempts to solve $1-\frac{1}{x~ln~a}=0$ for x

THEN

$x=\frac{1}{ln~a}$ OR $x~ln~a=1$ OR $ln~a=\frac{1}{x}$ OR $ln~a^{x}=1$ OR $\frac{1}{a^{x}ln~a}=1$

at $x=\frac{1}{ln~a}$, $log_{a}x=x$

attempts to solve $log_{a}(\frac{1}{ln~a})=\frac{1}{ln~a}$ for a

EITHER

\[\frac{ln(\frac{1}{ln~a})}{ln~a}=\frac{1}{ln~a}\Rightarrow ln(\frac{1}{ln~a})=1\]

OR

for example, writes
\[a^{log_{a}(\frac{1}{ln~a})}=a^{\frac{1}{ln~a}}\]
and then attempts to apply appropriate
index$/log$ laws to both sides:
\[ln~a=\frac{log_{a}e}{log_{a}a}\]
and so
\[\frac{1}{ln~a}=log_{a}e\]

THEN

attempts to solve $\frac{1}{ln~a}=e$ OR $log_{a}e=e$ for a analytically

$ln~a=\frac{1}{e}$ OR $a^{e}=e$

$a=e^{\frac{1}{e}}$

$x=\frac{1}{ln~e^{\frac{1}{e}}}=\frac{1}{\frac{1}{e}}=e$

coordinates of P are (e,e) (accept x=e, y=e)

METHOD 3

$y=log_{a} x$

$\frac{dy}{dx}=\frac{1}{x~ln~a}$

(equation of the tangent at (x,y) is) $y=\frac{1}{x_{1}ln~a}(x-x_{1})+\frac{ln~x_{1}}{ln~a}$ (or equivalent)

compares this equation with y = x and attempts to form at least one of the following
\[\frac{1}{x_{1}ln~a}=1\]
OR
\[\frac{ln~x_{1}-1}{ln~a}=0\]

attempts to solve
\[\frac{1}{x_{1}ln~a}=1\]
OR
\[\frac{ln~x_{1}-1}{ln~a}=0\]
for x

$x_{1}=e$

coordinates of P are (e,e) (accept x=e, y=e)

attempts to solve $\frac{1}{e~ln~a}=1$ (or equivalent) for a analytically

$ln~a=\frac{1}{e}$

$a=e^{\frac{1}{e}}$

(f) (i) $1<a<e^{\frac{1}{e}}$

(ii) $a>e^{\frac{1}{e}}$

Question 2

This question asks you to examine linear and quadratic functions constructed in systematic ways using arithmetic sequences.

Consider the function $L(x) = mx + c$ for $x \in \mathbb{R}$ where $m, c \in \mathbb{R}$ and $m, c \neq 0$.

Let $r \in \mathbb{R}$ be the root of $L(x) = 0$.

If $m, r$, and $c$, in that order, are in arithmetic sequence then $L(x)$ is said to be an AS-linear function.

Topic – SL:1.3

(a) Show that $L(x) = 2x – 1$ is an AS-linear function.

Consider $L(x) = mx + c$.

Topic – SL:2.5

(b) (i) Show that $r = -\frac{c}{m}$.

Topic – SL:1.3

(ii) Given that $L(x)$ is an AS-linear function, show that $L(x) = mx – \frac{m^2}{m+2}$.

Topic – SL:1.3

(iii) State any further restrictions on the value of $m$.

There are only three integer sets of values of $m$, $r$, and $c$ that form an AS-linear function. One of these is $L(x) = -x – 1$.

Topic – SL:1.3

(c) Use part (b) to determine the other two AS-linear functions with integer values of $m$, $r$, and $c$.

Consider the function $Q(x) = ax^2 + bx + c$ for $x \in \mathbb{R}$ where $a \in \mathbb{R}$, $a \neq 0$, and $b, c \in \mathbb{R}$.

Let $r_1, r_2 \in \mathbb{R}$ be the roots of $Q(x) = 0$.

(d) Write down an expression for

Topic – SL:2.7

(i) the sum of roots, $r_1 + r_2$, in terms of $a$ and $b$.

Topic – SL:2.7

(ii) the product of roots, $r_1r_2$, in terms of $a$ and $c$.

If $a, r_{1}, b, r_{2}$, and $c$, in that order, are in arithmetic sequence, then $Q(x)$ is said to be an AS-quadratic function.

(e) Given that $Q(x)$ is an AS-quadratic function,

Topic – SL:2.7

(i) write down an expression for $r_{2}-r_{1}$ in terms of $a$ and $b$;

Topic – AHL:2.10

(ii) use your answers to parts (d)(i) and (e)(i) to show that
\[r_{1}=\frac{a^{2}-ab-b}{2a};\]

Topic – AHL:2.10

(iii) use the result from part (e)(ii) to show that $b=0$ or
\[a=-\frac{1}{2}.\]

Consider the case where $b=0$.

Topic – SL:2.7

(f) Determine the two AS-quadratic functions that satisfy this condition.

Now consider the case where
\[a=-\frac{1}{2}.\]

Topic – AHL:2.10

(g) (i) Find an expression for $r_{1}$ in terms of $b$.

Topic – AHL:2.10

(ii) Hence or otherwise, determine the exact values of $b$ and $c$ such that AS-quadratic functions are formed.

Give your answers in the form
\[\frac{-p\pm q\sqrt{s}}{2}\]
where $p,q,s\in\mathbb{Z}$.

▶️Answer/Explanation

Solution: –

(a) $m=2, c=-1$

$r=\frac{1}{2}$

$\frac{1}{2},-1$

EITHER

$d=\left(\frac{1}{2}-2=-1-\frac{1}{2}\right)=-\frac{3}{2}$

OR

this sequence has a common difference of $-\frac{3}{2}$

OR

the (arithmetic) mean of 2 and -1 is $\frac{1}{2}$

THEN

hence L(x)=2x-1 is an AS-linear function

(b) (i) $(L(r)=0\Rightarrow)mr+c=0$

$r=-\frac{c}{m}$

(ii) METHOD 1

EITHER

attempts to use $(d=)r-m=c-r$

$(d=)\frac{c}{m}-m=c-\left(-\frac{c}{m}\right)$

removes the denominator m from their expression involving m and c
$m^{2}+cm+2c=0$ (or equivalent)

OR

attempts to use
$\frac{m+c}{2}=r$

removes the denominator m from their expression involving and c
$m^{2}+cm+2c=0$ or equivalent)

OR

attempts to use $c=m+2d$

$c=m+2\left(-\frac{c}{m}-m\right)$

removes the denominator $m$ from their expression involving $m$ and $c$
$m^{2}+cm+2c=0$ (or equivalent)

OR

attempts to use $r=m+d$ and $c=m+2d~ (c=m+2(r-m))$
$m^{2}+dm+m+2d=0$ or equivalent)
substitutes $d=\frac{c-m}{2}$ into their expression involving m and d
$m^{2}+cm+2c=0$ (or equivalent)

THEN

$c(m+2)=-m^{2}\Rightarrow c=-\frac{m^{2}}{m+2}$

so \(L(x)=mx-\frac{m^{2}}{m+2}\)

not accept working backwards from the AG.

METHOD 2

considers $L(x)=mx-mr$
attempts to use $(d=)r-m=c-r$

(M1) for attempting to use $(d=)m-r=r-c_{-}$

$(d=)r-m=-mr-r$
attempts to express in terms of m
$2r+mr=m\Rightarrow r=\frac{m}{m+2}$
so \(L(x)=mx-\frac{m^{2}}{m+2}\)

(iii) $m\ne-2$ $(m\ne0)$

(c) Attempts to find an integer value of m

e.g. uses the result that $m+2$ exactly divides 2 OR uses a table OR uses a graph
and slider OR uses systematic trial and error

$m=-4$ OR $m=-3$

-4,2,8 OR -3,3,9

$L(x)=-4x+8$, $L(x)=-3x+9$

(d) (i)

$-\frac{b}{a}$

(ii)

$\frac{c}{a}$

(e) (i) b-a

(ii) attempts to eliminate $r_{2}$

$2r_{1}=-\frac{b}{a}-(b-a)\Rightarrow 2r_{1}=\frac{a^{2}-ab-b}{a}$ (or equivalent)

so $r_{1}=\frac{a^{2}-ab-b}{2a}$

(iii) METHOD 1

EITHER

$(r_{1}=)\frac{a+b}{2}$

attempts to equate two expressions for either $r_{1}$ or 2r_{1} in terms of a and b
\[\frac{a+b}{2}=\frac{a^{2}-ab-b}{2a}\] OR \[a+b=\frac{a^{2}-ab-b}{a}\]

OR

b-r_{1}=r_{1}-a

attempts to use b-r_{1}=r_{1}-a with $r_{1}=\frac{a^{2}-ab-b}{2a}$

\[b-\left(\frac{a^{2}-ab-b}{2a}\right)=\frac{a^{2}-ab-b}{2a}-a\]

OR

$(r_{1}=)a+d$

attempts to use $r_{1}=a+d$ with $r_{1}=\frac{a^{2}-ab-b}{2a}$ and $d=\frac{b-a}{2}$

\[\frac{a^{2}-ab-b}{2a}=a+\frac{b-a}{2}\]

THEN

$2a^{2}+2ab=2a^{2}-2ab-2b$ OR $a^{2}+ab=a^{2}-ab-b$

$4ab+2b=0$ OR $2ab+b=0$

$2b(2a+1)=0$ OR $b(2a+1)=0$

so $b=0$ or $a=-\frac{1}{2}$

METHOD 2

(b=)a+2d OR (r_{1}=)a+d

attempts to equate two expressions for either $r_{1}$ or $2r_{1}$ in terms of a and d
\[a+d=\frac{a^{2}-a(a+2d)-(a+2d)}{2a}\] OR \[2(a+d)=\frac{a^{2}-a(a+2d)-(a+2d)}{a}\]
\[2a^{2}+4ad+a+2d=0\]
\[(2a+1)(a+2d)=0\]

Do not accept numerical verification from the AG.

so $b=0$ or $a=-\frac{1}{2}$

(f) METHOD 1

$r_{1}=\frac{a}{2}$ $r_{2}=-\frac{a}{2}$ OR $d=-\frac{a}{2}$

$c=-a$

attempts to find the values of a

EITHER

the roots of $ax^{2}-a=0$ are ±1 and $\frac{a}{2}=\pm1$

OR

substitutes $x=\pm\frac{a}{2}$ into $ax^{2}-a=0$ giving $\frac{a^{3}}{4}-a=0$

OR

$(r_{1}r_{2}=)\frac{c}{a}=-\frac{a^{2}}{4}\Rightarrow c=-\frac{a^{3}}{4}$ and so $-a=-\frac{a^{3}}{4}\Rightarrow\frac{a^{3}}{4}-a=0$

OR

$c-r_{1}=r_{2}-b\Rightarrow\frac{a^{3}}{4}-\left(-\frac{a}{2}\right)=\left(\frac{a}{2}\right)-b\Rightarrow\frac{a^{3}}{4}-a=0$

THEN

$a=\pm2$

$(r_{1}=\pm1, b=0, r_{2}=\mp1, c=\mp2)$

so $Q(x)=2x^{2}-2$, $Q(x)=-2x^{2}+2$

METHOD 2

$r_{1}=-d$ OR $r_{2}=d$ OR $a=-2d$

$c=2d$

attempts to find the values of d

EITHER

the roots of $-2dx^{2}+2d=0$ are $\pm1$

OR

substitutes $x=\pm d$ into $-2dx^{2}+2d=0$ giving $-2d^{3}+2d=0$

OR

attempts to use $r_{1}r_{2}=\frac{c}{a}$ to form $-d^{2}=\frac{2d}{-2d}$

THEN

$d=\pm1$

$(a=\pm2, r_{1}=\pm1, b=0, r_{2}=\mp1, c=\mp2)$

so $Q(x)=2x^{2}-2$, $Q(x)=-2x^{2}+2$

METHOD 3

$a=2r_{1}$ OR $r_{2}=-r_{1}$ OR $d=-r_{1}$

$c=-2r_{1}$

attempts to find the values of $r_{1}$

EITHER

the roots of $2r_{1}x^{2}-2r_{1}=0$ are $\pm1$

OR

substitutes $x=\pm r_{1}$ into $2r_{1}x^{2}-2r_{1}=0$ giving $2r_{1}^{3}-2r_{1}=0$

OR

attempts to use $r_{1}r_{2}=\frac{c}{a}$ to form $-r_{1}^{2}=\frac{-2r_{1}}{2r_{1}}$

THEN

$r_{1}=\pm1$

$(a=\pm2, r_{1}=\pm1, b=0, r_{2}=\mp1, c=\mp2)$

so $Q(x)=2x^{2}-2$, $Q(x)=-2x^{2}+2$

(g) (i) attempts to express $r_{1}$ in terms of b with $a=-\frac{1}{2}$

Note: Do not award (M1) if $a=\frac{1}{2}$ is used.

EITHER

uses $r_{1}=\frac{a+b}{2}$

OR

uses $r_{1}=\frac{a^{2}-ab-b}{2a}$

OR

uses $r_{1}-a=b-r_{1}$

THEN

$r_{1}=\frac{2b-1}{4}=\frac{b}{2}-\frac{1}{4}=\frac{b-\frac{1}{2}}{2}$

(ii) METHOD 1

EITHER

substitutes their expression for $r_{1}$ with $a=-\frac{1}{2}$ into $Q(x)=0$
\[Q\left(\frac{2b-1}{4}\right)=0\Rightarrow-\frac{1}{2}\left(\frac{2b-1}{4}\right)^{2}+b\left(\frac{2b-1}{4}\right)+c=0\]

OR

$r_{2}=\frac{6b+1}{4}=\left(\frac{3b}{2}+\frac{1}{4}\right)$

substitutes their expression for $r_{2}$ with $a=-\frac{1}{2}$ into $Q(x)=0$
\[Q\left(\frac{6b+1}{4}\right)=0\Rightarrow-\frac{1}{2}\left(\frac{6b+1}{4}\right)^{2}+b\left(\frac{6b+1}{4}\right)+c=0\]

THEN

$c=\frac{4b+1}{2}=\left(2b+\frac{1}{2}\right)$ (seen anywhere)
\[4b^{2}+20b+5=0\]
attempts to solve their quadratic in b
\[b=\frac{-5\pm2\sqrt{5}}{2}\]
substitutes into $c=\frac{4b+1}{2}$
\[c=\frac{-9\pm4\sqrt{5}}{2}\]

METHOD 2

substitutes their expressions for $r_{1}$ and $r_{2}$ with $a=-\frac{1}{2}$ into $Q(x)$
\[-\frac{1}{2}\left(x-\left(\frac{2b-1}{4}\right)\right)\left(x-\left(\frac{6b+1}{4}\right)\right)\]
\[-\frac{1}{2}x^{2}+bx-\frac{3}{8}b^{2}+\frac{1}{8}b+\frac{1}{32}\]
$c=\frac{4b+1}{2}=\left(2b+\frac{1}{2}\right)$ (seen anywhere)
\[2b+\frac{1}{2}=-\frac{3}{8}b^{2}+\frac{1}{8}b+\frac{1}{32}\]
\[\frac{2b}{2}+\frac{1}{2}=-\frac{3}{8}b^{2}+\frac{1}{8}b+\frac{1}{32}\]
\[4b^{2}+20b+5=0\]
attempts to solve their quadratic in b
\[b=\frac{-5\pm2\sqrt{5}}{2}\]
substitutes into
\[c=\frac{4b+1}{2}\]
\[c=\frac{-9\pm4\sqrt{5}}{2}\]

METHOD 4

attempts to equate two expressions for $r_{1}$ with $a=-\frac{1}{2}$
\[\frac{-b\pm\sqrt{b^{2}+2c}}{-1}=\frac{2b-1}{4}(\pm\sqrt{b^{2}+2c}=\frac{2b+1}{4})\]
\[c=\frac{4b+1}{2}(=\left(2b+\frac{1}{2}\right))\]
(seen anywhere)
\[12b^{2}-4b-1+32\left(2b+\frac{1}{2}\right)=0\]
$(4b^{2}+20b+5=0)$
attempts to solve their quadratic in b
\[b=\frac{-5\pm2\sqrt{5}}{2}\]
substitutes into
\[c=\frac{4b+1}{2}\]
\[c=\frac{-9\pm4\sqrt{5}}{2}\]

METHOD 5

EITHER

$r_{1}=d-\frac{1}{2}$

substitutes their expression for $r_{1}$ in terms of d with $a=-\frac{1}{2}$ into $Q(x)=0$
\[Q\left(d-\frac{1}{2}\right)=0\Rightarrow-\frac{1}{2}\left(d-\frac{1}{2}\right)^{2}+b\left(d-\frac{1}{2}\right)+c(=0)\]

OR

$r_{2}=3d-\frac{1}{2}$

substitutes their expression for $r_{2}$ in terms of d with $a=-\frac{1}{2}$ into $Q(x)=0$
\[Q\left(3d-\frac{1}{2}\right)=0\Rightarrow-\frac{1}{2}\left(3d-\frac{1}{2}\right)^{2}+b\left(3d-\frac{1}{2}\right)+c(=0)\]

THEN
$b=2d-\frac{1}{2}$ and $c=4d-\frac{1}{2}$ (seen anywhere)
\[4d^{2}+8d-1=0\]
attempts to solve their quadratic in d
\[d=\frac{-2\pm\sqrt{5}}{2}\]
\[b=\frac{-5\pm2\sqrt{5}}{2}\]
substitutes into
\[c=\frac{4b+1}{2}\]
\[c=\frac{-9\pm4\sqrt{5}}{2}\]

METHOD 6

$r_{1}=d-\frac{1}{2}$ and $r_{2}=3d-\frac{1}{2}$

substitutes their expressions for $r_{1}$ and $r_{2}$ in terms of d with $a=-\frac{1}{2}$ into $r_{1}r_{2}=\frac{c}{a}$
\[\left(d-\frac{1}{2}\right)\left(3d-\frac{1}{2}\right)=\frac{c}{-\frac{1}{2}}\] (or equivalent)
$c=4d-\frac{1}{2}$ (seen anywhere)
\[4d^{2}+8d-1=0\]
attempts to solve their quadratic in d
\[d=\frac{-2\pm\sqrt{5}}{2}\]
\[b=\frac{-5\pm2\sqrt{5}}{2}\]
substitutes into
\[c=\frac{4b+1}{2}\]
\[c=\frac{-9\pm4\sqrt{5}}{2}\]

Scroll to Top