AP Calculus AB and BC: Chapter 2 – Differentiation :2.3 -The Chain Rule and the Composite Functions Study Notes

The Chain Rule

If \(y=f\left ( u \right )\) and \(u=g\left ( x \right )\) are both differentiable functions, then \(y=f\left ( g\left ( x \right ) \right )\) is differentiable and

\(\frac{dy}{dx}\cdot \frac{dy}{du}\cdot \frac{du}{dx}\)

or, equivalently,

\(\frac{d}{dx}\left [ f\left ( g\left ( x \right ) \right ) \right ]={f}’\left ( g\left ( x \right ) \right ){g}’\left ( x \right ).\)

The Power Chain Rule

If n is any real number and \(u=g\left ( x \right )\) is differentiable, then

\(\frac{d}{dx}\left ( u^{n} \right )=nu^{n-1}\frac{du}{dx}\)

or, equivalently,

\(\frac{d}{dx}\left [ g\left ( x \right ) \right ]^{n}=n\left [ g\left ( x \right ) \right ]^{n-1}\cdot {g}’\left ( x \right ).\)

Example 1 

  • Find \(\frac{dy}{dx}\) for \(y=\sqrt{x^{4}-2x+5}.\)
Answer/Explanation

Solution

\(\frac{dy}{dx}=\frac{1}{2}\left ( x^{4}-2x+5 \right )^{1/2}\frac{d}{dx}\left ( x^{4}-2x+5 \right )\)             Power Chain Rule

\(=\frac{1}{2\sqrt{x^{4}-2x+5}}\cdot \left ( 4x^{3}-2 \right )\)

\(=\frac{2x^{3}-1}{\sqrt{x^{4}-2x+5}}\)

Example 2

  • Find \({h}”\left ( x \right )\) if \(h\left ( x \right )=f\left ( x^{3} \right ).\)
▶️Answer/Explanation

Solution

\({h}’\left ( x \right )={f}’\left ( x^{3} \right )\frac{d}{dx}\left ( x^{3} \right )\)           Chain Rule

\(={f}’\left ( x^{3} \right )\cdot \left ( 3x^{2} \right )\)

\({h}”\left ( x \right )={f}’\left ( x^{3} \right )\frac{d}{dx}\left ( 3x^{2} \right )+\left ( 3x^{2} \right )\frac{d}{dx}{f}’\left ( x^{3} \right )\)           Product Rule

\(={f}’\left ( x^{3} \right )\left ( 6x \right )+\left ( 3x^{2} \right ){f}”\left ( x^{3} \right )\frac{d}{dx}\left ( x^{3} \right )\)           Chain Rule

\(={f}’\left ( x^{3} \right )\left ( 6x \right )+\left ( 3x^{2} \right ){f}”\left ( x^{3} \right )\left (3 x^{2} \right )\)

\(=6x{f}’\left ( x^{3} \right )+9x^{4}{f}”\left ( x^{3} \right )\)

Exercises – The Chain Rule and the Composite Functions
Multiple Choice Questions

  •  If \(f\left ( x \right )=\sqrt{x+\sqrt{x}}\), then \({f}’\left ( x \right )=\)

(A) \(\frac{1}{2\sqrt{x+\sqrt{x}}}\)               (B) \(\frac{\sqrt{x}+1}{2\sqrt{x+\sqrt{x}}}\)                (C) \(\frac{2\sqrt{x}}{4\sqrt{x+\sqrt{x}}}\)               (D) \(\frac{2\sqrt{x}+1}{4\sqrt{x^{2}+x\sqrt{x}}}\)

▶️Answer/Explanation

Ans:

1. D

2. If \(f\left ( x \right )=\left ( x^{2}-3x \right )^{3/2}\), then \({f}’\left ( 4 \right )=\)

(A) \(\frac{15}{2}\)               (B) 9                (C) \(\frac{21}{2}\)                (D) 15

▶️Answer/Explanation

Ans:

2. D

3. If f , g , and h are functions that is everywhere differentiable, then the derivative of \(\frac{f}{g\cdot h}\) is

(A) \(\frac{g h {f}’-f {g}’ {h}’}{g h}\)

(B) \(\frac{gh{f}’-fg{h}’-fh{g}’}{gh}\)

(C) \(\frac{gh{f}’-fg{h}’-f{g}’h}{g^{2}h^{2}}\)

(D) \(\frac{gh{f}’-fg{h}’+fh{g}’}{g^{2}h^{2}}\)

▶️Answer/Explanation

Ans:

3. C

4. If \(f\left ( x \right )=\left ( 3-\sqrt{x} \right )^{-1}\), then \({f}”\left ( 4 \right )=\)

(A) \(\frac{3}{32}\)               (B) \(\frac{3}{16}\)                (C) \(\frac{3}{4}\)                (D) \(\frac{9}{4}\)

▶️Answer/Explanation

Ans:

4. A

Free Response Questions

Questions 5-9 refer to the following table.

The table above gives values of f , f ′ , g , and g′ at selected values of x .

5. Find \({h}’\left ( 1 \right ), if h\left ( x \right )=f\left ( g\left ( x \right ) \right ).\)

▶️Answer/Explanation

Ans:

5. 1

6. Find \({h}’\left ( 2 \right )\), if \(h\left ( x \right )=xf\left ( x^{2} \right ).\)

▶️Answer/Explanation

Ans:

6. 13

7. Find \({h}’\left ( 3 \right )\), if \(h\left ( x \right )=\frac{f\left ( x \right )}{\sqrt{g\left ( x \right )}}.\)

▶️Answer/Explanation

Ans:

7. \(\frac{13}{16}\)

8. Find \({h}’\left ( 2 \right )\), if \(h\left ( x \right )=\left [ f\left ( 2x \right ) \right ]^{2}.\)

▶️Answer/Explanation

Ans:

8. 20

9. Find \({h}’\left ( 1 \right )\), if \(h\left ( x \right )=\left ( x^{9}+f\left ( x \right ) \right )^{-2}.\)

▶️Answer/Explanation

Ans:

9. \(-\frac{5}{16}\)

10. Let f and g be differentiable functions such that \(f\left ( g\left ( x \right ) \right )=2x\) and \({f}’\left ( x \right )=1+\left [ f\left ( x \right ) \right ]^{2}.\)

(a) Show that \({g}’\left ( x \right )=\frac{2}{{f}’\left ( g\left ( x \right ) \right )}.\)

(b) Show that \({g}’\left ( x \right )=\frac{2}{1+4x^{2}}.\)

▶️Answer/Explanation

Ans:

10. (a) \(f\left ( g\left ( x \right ) \right )=2x,\frac{d}{dx}\left [ f\left ( g\left ( x \right ) \right ) \right ]=\frac{d}{dx}\left [ 2x \right ]\Rightarrow {f}’\left ( g\left ( x \right ) \right )\cdot {g}’\left ( x \right )=2\Rightarrow {g}’\left ( x \right )=\frac{2}{{f}’\left ( g\left ( x \right ) \right )}\)

10. (b) \({f}’\left ( x \right )=1+\left [ f\left ( x \right ) \right ]^{2}\Rightarrow {f}’\left ( g\left ( x \right ) \right )=1+\left [ f\left ( g\left ( x \right ) \right ) \right ]^{2}=1+\left [ 2x \right ]^{2}=1+4x^{2}\)

Therefore, \({g}’\left ( x \right )=\frac{2}{{f}’\left ( g\left ( x \right ) \right )}=\frac{2}{1+4x^{2}}.\)

Scroll to Top