AP Calculus AB and BC: Chapter 4 -Integration : 4.6 – The Fundamental Theorem of Calculus Part 1 Study Notes

Fundamental Theorem of Calculus Part 1

If $f$ is continuous on $[a, b]$ then $F(x)=\int_a^x f(t) d t$ is continuous on $[a, b]$ and differentiable on $(a, b)$, so

$
F^{\prime}(x)=\frac{d}{d x} \int_a^x f(t) d t=f(x)
$

If $F(x)=\int_a^{u(x)} f(t) d t$, then by the chain rule
$
F^{\prime}(x)=\frac{d}{d x} \int_a^{u(x)} f(t) d t=f(u) \cdot \frac{d u}{d x}
$

Example1

  • If $F(x)=\int_1^x \frac{1}{1+t^3} d t$, then $F^{\prime}(x)=$
▶️Answer/Explanation

Solution

$
\begin{aligned}
& F^{\prime}(x)=\frac{d}{d x} \int_1^x \frac{1}{1+t^3} d t \\
& =\frac{1}{1+x^3}
\end{aligned}
$
Fundamental Theorem of Calculus

Example2

  • $
    \frac{d}{d x} \int_1^{x^2} \sqrt{3+t^2} d t=
    $

(A) $\sqrt{3+x^2}$

(B) $\sqrt{3+x^4}$

(C) $2 x \sqrt{3+x^4}$

(D) $2 \sqrt{3+x^2}$

▶️Answer/Explanation

Ans:C

Example3

  • For $-\frac{\pi}{2}<x<\frac{\pi}{2}$, if $F(x)=\int_0^{\sin x} \frac{d t}{\sqrt{1-t^2}}$, then $F^{\prime}(x)=$

(A) $\frac{\sin x}{\sqrt{1-x^2}}$

(B) $\frac{\cos x}{\sqrt{1-x^2}}$

(C) 1

(D) $\csc x$

▶️Answer/Explanation

Ans:C

Example4

  • If $F(x)=\int_0^{\sqrt{x}} \cos \left(t^2\right) d t$, then $F^{\prime}(4)=$

(A) $\cos 2$

(B) $\frac{\cos 4}{4}$

(C) $\frac{\cos 4}{\sqrt{2}}$

(D) $\sqrt{2} \cos 4$

▶️Answer/Explanation

Ans:B

Scroll to Top