Home / AP Calculus BC : 10.9 Determining Absolute or Conditional  Convergence- Exam Style questions with Answer- MCQ

AP Calculus BC : 10.9 Determining Absolute or Conditional  Convergence- Exam Style questions with Answer- MCQ

Question

What are all values of x for which the series \(\sum_{n=1}^{\infty }\frac{(x-2)^n}{n.3^{n}}\) converges?

(A) −3≤x ≤ 3 
(B) −3< x< 3
(C) −1< x ≤ 5 
(D) −1≤x ≤ 5 
(E) −1≤x < 5

Answer/Explanation

Ans:E

Question

 The interval of convergence of\sum_{n=0}^{\infty }\frac{(x-1)^{n}}{3^{n}} is

(A)\(-3<x\leq 3\)               (B)\(-3\leq x\leq 3\)                         (C)\(-2<x<4\)                                (D)\(-2\leq x<4\)                              (E)\(0\leq x\leq 2\)

Answer/Explanation

Ans:C

 

Question

If \(S_{n}=\left ( \frac{(5+n)^{100}}{5^{n+1}} \right )\left ( \frac{5^{n}}{(4+n)^{100}} \right ){s_{n}}\)

(A)\(\frac{1}{5}\)                       (B)1                             (C)\(\frac{5}{4}\)                       (D)\(\left ( \frac{5}{4}\right )^{100}\)              (E) The sequence does not converge.

Answer/Explanation

Ans:A

 

Question

For what integer k, k >1, will both \(\sum_{n=1}^{\infty }\frac{(-1)^{kn}}{n} \) and \(\sum_{n=1}^{\infty }\left ( \frac{k}{4} \right )^{n}\) converge?

(A) 6                                   (B) 5                                                 (C) 4                                      (D) 3                                                                 (E) 2

Answer/Explanation

Ans:D

The first series is either the harmonic series or the alternating harmonic series depending on

Scroll to Top