Calc-Ok Question 1
Most-appropriate topic codes (CED):
• TOPIC 4.1: Interpreting the Meaning of the Derivative in Context — units/rate interpretation \(r(t)-0.7\). :contentReference[oaicite:1]{index=1}
• TOPIC 5.5: Using the Candidates Test to Determine Absolute (Global) Extrema — checking endpoints and where \(N'(t)=0\). :contentReference[oaicite:2]{index=2}
▶️ Answer/Explanation
(a)
The number entering on \(0\le t\le 300\) is \[ \int_{0}^{300}\! r(t)\,dt =\int_{0}^{300}\! 44\!\left(\frac{t}{100}\right)^{3}\!\left(1-\frac{t}{300}\right)^{7} dt \approx \boxed{270\ \text{people}}. \] (Accumulation via definite integral: Topic 8.3.) :contentReference[oaicite:3]{index=3}
(b)
Let \(N(t)\) be the number in line. Then \[ N(300)=N(0)+\int_{0}^{300}\!\big(r(t)-0.7\big)\,dt. \] With \(N(0)=20\) and part (a): \(\int_{0}^{300}r(t)\,dt=270\). Also \(\displaystyle \int_{0}^{300}0.7\,dt=0.7(300)=210\). Hence \[ N(300)=20+(270-210)=\boxed{80\ \text{people}}. \]
(c)
For \(t>300\), \(r(t)=0\), so people leave at \(0.7\) person/s starting from \(N(300)=80\). Time to empty line \(=\dfrac{80}{0.7}=114.2857\text{ s}\). First time with no one in line: \[ \boxed{t=300+ \frac{80}{0.7}\approx 414.286\ \text{seconds}}. \]
(d) Minimum of \(N(t)\) on \(0\le t\le 300\)
For \(0\le t\le 300\), \[ N(t)=20+\int_{0}^{t}\!\big(r(x)-0.7\big)\,dx, \qquad N'(t)=r(t)-0.7. \] Critical times solve \(r(t)=0.7\). Numerically, there are two solutions in \([0,300]\):
\(\displaystyle t_1\approx 33.013298\ \text{s},\quad t_2\approx 166.574719\ \text{s}.\)
Evaluate candidates and endpoints (candidates test on a closed interval: Topic 5.5). :contentReference[oaicite:4]{index=4}
\[ \begin{array}{c|c} t & \text{People in line} \\ \hline 0 & 20 \\ t_1 & 20+\int_{0}^{t_1}\!\!\big(r-0.7\big)\,dx \approx \mathbf{3.803} \\ t_2 & 20+\int_{0}^{t_2}\!\!\big(r-0.7\big)\,dx \approx 158.070 \\ 300 & 80 \end{array} \] Since \(N'(t)\) changes from negative to positive at \(t_1\) (and \(N(0),N(300)\) are larger), the minimum occurs at \[ \boxed{t\approx 33.013\ \text{s},\quad N_{\min}\approx 4\ \text{people (nearest whole number)}}. \] (Rate meaning and sign analysis: Topics 4.1 & 8.3.) :contentReference[oaicite:5]{index=5} :contentReference[oaicite:6]{index=6}
Calc-Ok Question 2
Most-appropriate topic codes (CED):
• TOPIC 8.3: Using Accumulation Functions & Definite Integrals in Applied Contexts — total amount from a density (parts (b), (c)).
• TOPIC 6.13 (BC): Evaluating Improper Integrals — bounding the tail with a comparison (part (c)).
• TOPIC 9.4 (BC): Vector-Valued Functions — speed \(=\sqrt{(x’)^{2}+(y’)^{2}}\) and distance \(\int \text{speed}\,dt\) (part (d)).
▶️ Answer/Explanation
\(p(h)=0.2h^{2}e^{-0.0025h^{2}}\). Using product & chain rules, \[ p'(h)=e^{-0.0025h^{2}}\big(0.4h\big)+0.2h^{2}\cdot e^{-0.0025h^{2}}\cdot(-0.005h) =e^{-0.0025h^{2}}\big(0.4h-0.001h^{3}\big). \] Evaluate at \(h=25\): \(0.4h-0.001h^{3}=10-15.625=-5.625\); \(e^{-0.0025(25^{2})}=e^{-1.5625}\). \[ p'(25)=(-5.625)\,e^{-1.5625}\approx \boxed{-1.179}. \] Units/meaning: At a depth of \(25\) meters, the plankton density is decreasing at a rate of about \(\boxed{1.179\ \text{million cells per m}^3\ \text{per meter of depth}}\).
(b) Total plankton (millions) in a \(3\ \text{m}^2\) column from \(h=0\) to \(30\)
Amount \(=\displaystyle \int_{0}^{30}\!\big(\text{area}\times \text{density}\big)\,dh=\int_{0}^{30}\!3\,p(h)\,dh\). Numerically, \[ \int_{0}^{30}\!3\,p(h)\,dh\approx \boxed{1675.414936}. \] To the nearest million: \(\boxed{1675\ \text{million}}\).
(c) Whole column to depth \(K>30\) and the \(2000\) bound
Number of cells (millions) in entire column: \[ \boxed{\;\int_{0}^{30}\!3\,p(h)\,dh\;+\;\int_{30}^{K}\!3\,f(h)\,dh\;} \] Since \(0\le f(h)\le u(h)\) for \(h\ge 30\), \[ 0\le \int_{30}^{K}\!3\,f(h)\,dh \le \int_{30}^{K}\!3\,u(h)\,dh \le 3\!\int_{30}^{\infty}\!u(h)\,dh=3\cdot 105=315. \] Therefore the total is \(\le 1675.415+315=1990.415\le \boxed{2000\ \text{million}}\).
(d) Distance traveled for \(0\le t\le 1\)
Speed \(=\sqrt{(x'(t))^{2}+(y'(t))^{2}}=\sqrt{(662\sin 5t)^{2}+(880\cos 6t)^{2}}\). Total distance \[ \boxed{\;\int_{0}^{1}\!\sqrt{(x'(t))^{2}+(y'(t))^{2}}\,dt\;} \approx \boxed{757.455862\ \text{meters}}\ \ (\text{about }757.456\ \text{m})\]
No-Calc Question
The graph of the continuous function g, the derivative of the function f, is shown above. The function g is piecewise linear for \(-5 \le x < 3\), and \(g(x)=2(x-4)^2\) for \(3 \le x \le 6\).
Most-appropriate topic codes (CED):
• TOPIC 5.3: Determining intervals of increase/decrease from \(f'(x)\) — part (c)
• TOPIC 5.4: Determining concavity and points of inflection using \(f”(x)\) or \(g'(x)\) — parts (c), (d)
▶️ Answer/Explanation
\(f’ = g\), so \(f(b)-f(a)=\displaystyle\int_a^b g(x)\,dx\). \(f(-5)=f(1)+\int_{1}^{-5} g(x)\,dx= f(1) – \int_{-5}^{1} g(x)\,dx.\)
From the graph on \([-5,1]\):
• \([-5,-3]\): rectangle of height \(-3\), width \(2\) → area \(-6\).
• \([-3,0]\): triangle below axis, base \(3\), height \(3\) → \(-\tfrac{9}{2}\).
• \([0,1]\): triangle above axis, base \(1\), height \(2\) → \(+1\).
\(\int_{-5}^{1} g(x)\,dx = -6 – \tfrac{9}{2} + 1 = -\tfrac{19}{2}\).
\(f(-5)=3 – \big(-\tfrac{19}{2}\big)=\boxed{\tfrac{25}{2}}.\)
(b) Evaluate \(\int_{1}^{6} g(x)\,dx\)
Split at \(x=3\): \(\int_{1}^{6} g=\int_{1}^{3} g + \int_{3}^{6} g.\)
• On \([1,3]\), \(g=2\) → area \(2\cdot2=4\).
• On \([3,6]\), \(g(x)=2(x-4)^2\). \(\int_{3}^{6}2(x-4)^2dx=\left[\tfrac{2}{3}(x-4)^3\right]_{3}^{6}= \tfrac{16}{3}-(-\tfrac{2}{3})=6.\)
Total \(=4+6=\boxed{10}.\)
(c) Intervals where \(f\) is increasing and concave up
\(f\) is increasing when \(f'(x)=g(x)>0\). \(f\) is concave up when \(f”(x)=g'(x)>0\). On \(0<x<1\): \(g>0\) and slope of \(g\) is positive. On \(4<x<6\): \(g(x)=2(x-4)^2>0\), and \(g'(x)=4(x-4)>0\). Therefore the intervals are \(\boxed{(0,1)\ \text{and}\ (4,6)}\).
(d) Points of inflection of \(f\)
Points of inflection occur where \(f”(x)=g'(x)\) changes sign. From the graph, \(g\) changes from decreasing to increasing at \(x=4\) (local minimum). Thus, the point of inflection is at \(\boxed{x=4}\).
No-Calc Question 4
| \(t\) (years) | 2 | 3 | 5 | 7 | 10 |
|---|---|---|---|---|---|
| \(H(t)\) (meters) | 1.5 | 2 | 6 | 11 | 15 |
Most-appropriate topic codes (CED):
• TOPIC 6.3: Riemann Sums & Trapezoidal Rule — part (c)
• TOPIC 4.4: Introduction to Related Rates — part (d) setup
• TOPIC 4.5: Solving Related Rates Problems (Chain Rule) — part (d) computation
▶️ Answer/Explanation
Use a symmetric secant around \(t=6\): points \(t=5\) and \(t=7\).
\[ H'(6)\approx\frac{H(7)-H(5)}{7-5}=\frac{11-6}{2}=\boxed{\tfrac{5}{2}}. \]
Interpretation: At \(t=6\) years, the tree’s height is increasing at about \(\boxed{2.5\ \text{meters per year}}\).
(b) Show a time \(t\) with \(H'(t)=2\) for \(2<t<10\)
On \([3,5]\), the average rate of change is \(\dfrac{H(5)-H(3)}{5-3}=\dfrac{6-2}{2}=2\).
\(H\) is continuous on \([3,5]\) and differentiable on \((3,5)\).
By the Mean Value Theorem, there exists \(c\in(3,5)\) such that \(\boxed{H'(c)=2}\).
(c) Average height on \(2\le t\le 10\) via trapezoids
Subintervals: \([2,3], [3,5], [5,7], [7,10]\) with widths \(1,2,2,3\).
Trapezoidal estimate for the integral: \[ \int_{2}^{10} H(t)\,dt \approx 1\cdot\frac{1.5+2}{2} +2\cdot\frac{2+6}{2} +2\cdot\frac{6+11}{2} +3\cdot\frac{11+15}{2} = 65.75=\frac{263}{4}. \]
Average height \(=\dfrac{1}{10-2}\int_{2}^{10}H(t)\,dt =\dfrac{1}{8}\cdot\frac{263}{4} =\boxed{\tfrac{263}{32}\ \text{meters}}\;(\approx 8.219).\)
(d) Rate of change of height when the tree is 50 m tall
Model: \(G(x)=\dfrac{100x}{1+x}\), with \(x’=\dfrac{dx}{dt}=0.03\ \text{m/yr}\).
First find \(x\) when \(G(x)=50\): \[ \frac{100x}{1+x}=50 \;\Rightarrow\; 100x=50(1+x)\;\Rightarrow\; x=\boxed{1}. \]
Differentiate \(G\): \(G'(x)=\dfrac{100(1+x)-100x}{(1+x)^2}=\dfrac{100}{(1+x)^2}\).
Chain rule: \[ \frac{dG}{dt}=G'(x)\,x’ =\frac{100}{(1+1)^2}\cdot 0.03 =25\cdot 0.03 =\boxed{\tfrac{3}{4}\ \text{m/yr}}. \]
So when the tree is \(50\) m tall, its height is increasing at \(\tfrac{3}{4}\) meter per year.
No-Calc Question
The graphs of the polar curves \(r=4\) and \(r=3+2\cos\theta\) are shown in the figure above. The curves intersect at \(\theta=\dfrac{\pi}{3}\) and \(\theta=\dfrac{5\pi}{3}\).
Most-appropriate topic codes (CED):
• TOPIC 9.7 Defining Polar Coordinates and Differentiating in Polar Form
• TOPIC 4.5:Solving Related Rates Problems (Chain Rule) — part (c)
▶️ Answer/Explanation
Inside the circle \(r=4\) and outside \(r=3+2\cos\theta\) between the intersection angles \(\theta=\dfrac{\pi}{3}\) and \(\theta=\dfrac{5\pi}{3}\):
\[ \boxed{\text{Area}(R)=\frac12\int_{\pi/3}^{5\pi/3}\!\Big(4^{2}-\big(3+2\cos\theta\big)^{2}\Big)\,d\theta }. \]
(b) Slope \(\dfrac{dy}{dx}\) at \(\theta=\dfrac{\pi}{2}\)
For polar \(x=r\cos\theta,\ y=r\sin\theta\): \(\displaystyle \frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} =\frac{r’\sin\theta+r\cos\theta}{r’\cos\theta-r\sin\theta}\), with \(r’=dr/d\theta\).
Here \(r=3+2\cos\theta\Rightarrow r’=-2\sin\theta\). At \(\theta=\dfrac{\pi}{2}\): \(\sin=\!1,\ \cos=\!0,\ r=3\).
Numerator \(=r’\sin\theta+r\cos\theta=(-2)(1)+3(0)=-2\).
Denominator \(=r’\cos\theta-r\sin\theta=(-2)(0)-3(1)=-3\).
\[ \boxed{\left.\frac{dy}{dx}\right|_{\theta=\pi/2}=\frac{-2}{-3}=\frac{2}{3}}. \]
(c) Angular rate \(\dfrac{d\theta}{dt}\) at \(\theta=\dfrac{\pi}{3}\)
Given the radial distance increases at \(3\) units/s: \(\displaystyle \frac{dr}{dt}=3\). Chain rule: \(\displaystyle \frac{dr}{dt}=\frac{dr}{d\theta}\cdot\frac{d\theta}{dt}\). Since \(r’=dr/d\theta=-2\sin\theta\), \[ \frac{d\theta}{dt}=\frac{\frac{dr}{dt}}{\frac{dr}{d\theta}} =\frac{3}{-2\sin\theta}. \] Evaluate at \(\theta=\dfrac{\pi}{3}\) (\(\sin\frac{\pi}{3}=\frac{\sqrt3}{2}\)): \[ \boxed{\frac{d\theta}{dt}=\frac{3}{-2\cdot(\sqrt3/2)}=-\frac{3}{\sqrt3}=-\sqrt3\ \text{radians/second}}. \] (Negative sign indicates \(\theta\) is decreasing at that instant.)
No-Calc Question
Most-appropriate topic codes (CED):
• TOPIC 10.13: Radius & Interval of Convergence of Power Series (ratio test; endpoint analysis) — part (b)
• TOPIC 10.10: Alternating Series Test & Error Bound — part (c)
▶️ Answer/Explanation
Start with \(\ln(1+u)=\displaystyle\sum_{n=1}^{\infty}(-1)^{n+1}\dfrac{u^{n}}{n}\) for \(|u|<1\). Substitute \(u=\dfrac{x}{3}\) and multiply by \(x\): \[ f(x)=x\sum_{n=1}^{\infty}(-1)^{n+1}\frac{(x/3)^{n}}{n} =\sum_{n=1}^{\infty}(-1)^{n+1}\frac{x^{\,n+1}}{n\,3^{n}}. \] First four nonzero terms (for \(n=1,2,3,4\)): \[ \boxed{\frac{x^{2}}{3}\;-\;\frac{x^{3}}{2\cdot 3^{2}}\;+\;\frac{x^{4}}{3\cdot 3^{3}}\;-\;\frac{x^{5}}{4\cdot 3^{4}}\;+\;\cdots} \] General term: \[ \boxed{a_n(x)=(-1)^{n+1}\,\frac{x^{\,n+1}}{n\,3^{n}}\qquad(n\ge 1)}. \]
(b) Interval of convergence
The parent series for \(\ln(1+u)\) has radius \(1\). With \(u=\dfrac{x}{3}\), the radius becomes \(3\): \(\;|x|<3\). Check endpoints:
• \(x=3\): series becomes \(\displaystyle\sum_{n=1}^{\infty}(-1)^{n+1}\frac{3}{n}\), an alternating harmonic (scaled) → converges (conditionally).
• \(x=-3\): series becomes \(\displaystyle\sum_{n=1}^{\infty}\frac{3}{n}\) → harmonic → diverges.
Therefore the interval of convergence is \[ \boxed{(-3,\,3]}\quad\text{with radius }R=3. \]
(c) Error bound for \(P_4(2)\)
\(P_4\) keeps terms up to degree 4 (i.e., \(n=1,2,3\)). The next omitted term is the degree-5 term (\(n=4\)): \[ T_{5}(x)=\;-\;\frac{x^{5}}{4\cdot 3^{4}}. \] By the alternating series error bound, at \(x=2\) \[ \big|P_4(2)-f(2)\big| \le \Big|\frac{2^{5}}{4\cdot 3^{4}}\Big| =\frac{32}{4\cdot 81} =\boxed{\frac{8}{81}}. \]
