CBSE Class 12 Maths Inverse of a Matrix and Application of Determinants and Matrix
Determinants Class 12 MCQs Questions with Answers
Question 1.
\(\left[\begin{array}{ccc}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right]\)
(a) (x – y) (y + z)(z + x)
(b) (x + y) (y – z)(z – x)
(c) (x – y) (y – z)(z + x)
(d) (x – y) (y – z) (z – x)
Answer
Answer: (d) (x – y) (y – z) (z – x)
Question 2.
The value of the determinant
\(\left[\begin{array}{ccc}
3 & 1 & 7 \\
5 & 0 & 2 \\
2 & 5 & 3
\end{array}\right]\)
(a) 124
(b) 125
(c) 134
(d) 144
Answer
Answer: (c) 134
Question 3.
If a, b, c are in A.P. then the determinant
\(\left[\begin{array}{ccc}
x+2 & x+3 & x+2a \\
x+3 & x+4 & x+2b \\
x+4 & x+5 & x+2c
\end{array}\right]\)
(a) 1
(b) x
(c) 0
(d) 2x
Answer
Answer: (c) 0
Question 4.
If w is a non-real root of the equation x² – 1 = 0. then
\(\left[\begin{array}{ccc}
1 & ω & ω^{2} \\
ω & ω^{2} & 1 \\
ω^{2} & 1 & ω
\end{array}\right]\) =
(a) 0
(b) 1
(c) ω
(d) ω²
Answer
Answer: (a) 0
Question 5.
If Δ = \(\left[\begin{array}{cc}
10 & 2 \\
30 & 6
\end{array}\right]\) then A =
(a) 0
(b) 10
(c) 12
(d) 60
Answer
Answer: (a) 0
Question 6.
If 7 and 2 are two roots of the equation \(\left[\begin{array}{ccc}
x & 3 & 7 \\
2 & x & 2 \\
7 & 6 & x
\end{array}\right]\) then the third root is
(a) -9
(b) 14
(c) \(\frac{1}{2}\)
(d) None of these
Answer
Answer: (a) -9
Question 7.
If \(\left[\begin{array}{cc}
x & 2 \\
18 & x
\end{array}\right]\) = \(\left[\begin{array}{cc}
6 & 2 \\
18 & 6
\end{array}\right]\) x is equal to
(a) 6
(b) ±6
(c) -1
(d) -6
Answer
Answer: (b) ±6
Question 8.
\(\left[\begin{array}{ccc}
1 & a & a^{2}-bc \\
1 & b & b^{2}-ca \\
1 & c & c^{2}-ab
\end{array}\right]\) is equal to
(a) abc
(b) ab + bc + ca
(c) 0
(d) (a – b)(b – c)(c – a)
Answer
Answer: (c) 0
Question 9.
A = \(\left[\begin{array}{ll}
\alpha & q \\
q & \alpha
\end{array}\right]\) |A³| = 125 then α =
(a) ±3
(b) ±2
(c) ±5
(d) 0
Answer
Answer: (a) ±3
Question 10.
If a ≠ 0 and \(\left[\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+a & 1 \\
1 & 1 & 1+a
\end{array}\right]\) = 0 then a =
(a) a = -3
(b) a = 0
(c) a = 1
(d) a = 3
Answer
Answer: (a) a = -3
Question 11.
If x > 0 and x ≠ 1. y > 0. and y ≠ 1, z > 0 and z ≠ 1 then
\(\left[\begin{array}{ccc}
1 & log_{x}y & log_{x}z \\
log_{y}x & 1 & log_{y}z \\
log_{z}x & log_{z}y & 1
\end{array}\right]\) is equal to
(a) 1
(b) -1
(c) 0
(d) None of these
Answer
Answer: (c) 0
Question 12.
\(\left[\begin{array}{ccc}
y+z & z & x \\
y & z+x & y \\
z & z & x+y
\end{array}\right]\) is equal to
(a) 6xyz
(b) xyz
(c) 4xyz
(d) xy + yz + zx
Answer
Answer: (c) 4xyz
Question 13.
If \(\left[\begin{array}{cc}
2 & 4 \\
5 & 1
\end{array}\right]\) = \(\left[\begin{array}{cc}
2x & 4 \\
6 & x
\end{array}\right]\) then the value of x is
(a) ±2
(b) ±\(\frac{1}{3}\)
(c) ±√3
(d) ± (0.5)
Answer
Answer: (c) ±√3
Question 14.
If \(\left[\begin{array}{cc}
2x & 5 \\
8 & x
\end{array}\right]\) = \(\left[\begin{array}{cc}
6 & -2 \\
7 & 3
\end{array}\right]\) then the value of x is
(a) 3
(b) ±3
(c) ±6
(d) 6
Answer
Answer: (c) ±6
Question 15.
The value of determinant \(\left[\begin{array}{ccc}
a-b & b+c & a \\
b-c & c+a & b \\
c-a & a+b & c
\end{array}\right]\)
(a) a³ + b³ + c ³
(b) 3bc
(c) a³ + b³ + c³ – 3abc
(d) None of these
Answer
Answer: (c) a³ + b³ + c³ – 3abc
Question 16.
The area of a triangle with vertices (-3, 0) (3, 0) and (0, k) is 9 sq. units. The value of k will be
(a) 9
(b) 3
(c) -9
(d) 6
Answer
Answer: (b) 3
Question 17.
The determinant \(\left[\begin{array}{ccc}
b^{2}-ab & b-c & bc-ac \\
ab-a^{2} & a-b & b^{2}-ab \\
bc-ac & c-a & ab-a^{2}
\end{array}\right]\) equals
(a) abc(b – c)(c -a)(a – b)
(b) (b – c)(c – a)(a – b)
(c) (a + b + c)(b – c)(c – a)(a – b)
(d) None of these
Answer
Answer: (d) None of these
Question 18.
The number of distinct real roots of \(\left[\begin{array}{ccc}
sin x & cos x & cos x \\
cos x & sin x & cos x \\
cos x & cos x & sin x
\end{array}\right]\) = 0 in the interval –\(\frac{π}{4}\) ≤ x ≤ \(\frac{π}{4}\) is
(a) 0
(b) 2
(c) 1
(d) 3
Answer
Answer: (c) 1
Question 19.
If A, B and C are angles of a triangle, then the determinant
\(\left[\begin{array}{ccc}
-1 & cos C & cos B \\
cos C & -1 & cos A \\
cos B & cos A & -1
\end{array}\right]\)
(a) 0
(b) -1
(c) 1
(d) None of these
Answer
Answer: (a) 0
Question 20.
Let f(t) = \(\left[\begin{array}{ccc}
cot t & t & 1 \\
2 sin t & t & 2t \\
sin t & t & t
\end{array}\right]\) then \(_{t→0}^{lim}\) \(\frac{f(t)}{t^2}\) is equal to
(a) 0
(b) -1
(c) 2
(d) 3
Answer
Answer: (a) 0
Question 21.
The maximum value of \(\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1+sin θ & 1 \\
1+cos θ & 1 & 1
\end{array}\right]\) is (θ is real number)
(a) \(\frac{1}{2}\)
(b) \(\frac{√3}{2}\)
(c) \(\frac{2√3}{4}\)
(d) √2
Answer
Answer: (a) \(\frac{1}{2}\)
Question 22.
If f(x) = \(\left[\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right]\) then
(a) f(a) = 0
(b) f(b) = 0
(c) f(0) = 0
(d) f(1) = 0
Answer
Answer: (c) f(0) = 0
Question 23.
If A = \(\left[\begin{array}{ccc}
2 & \lambda & -3 \\
0 & 2 & 5 \\
1 & 1 & 3
\end{array}\right]\) then A-1 exists if
(a) λ = 2
(b) λ ≠ 2
(c) λ ≠ -2
(d) None of these
Answer
Answer: (d) None of these
Question 24.
If A and B are invertible matrices, then which of the following is not correct?
(a) adj A = |A|.A-1
(b) det (a)-1 = [det (a)]-1
(c) (AB)-1 = B-1A-1
(d) (A + B)-1 = B-1 + A-1
Answer
Answer: (d) (A + B)-1 = B-1 + A-1
Question 25.
If x, y, z are all different from zero and
\(\left[\begin{array}{ccc}
1+x & 1 & 1 \\
1 & 1+y & 1 \\
1 & 1 & 1+z
\end{array}\right]\) = 0, then value of x-1 + y-1 + z-1 is
(a) xyz
(b) x-1y-1z-1
(c) -x – y – z
(d) -1
Answer
Answer: (d) -1
Question 26.
The value of the determinant \(\left[\begin{array}{ccc}
x & x+y & x+2y \\
x+2y & x & x+y \\
x+y & x+2y & x
\end{array}\right]\) is
(a) 9x² (x + y)
(b) 9y² (x + y)
(c) 3y² (x + y)
(d) 7x² (x + y)
Answer
Answer: (b) 9y² (x + y)
Question 27.
There are two values of a which makes determinant
Δ = \(\left[\begin{array}{ccc}
1 & -2 & 5 \\
2 & a & -1 \\
0 & 4 & 2a
\end{array}\right]\) = 86, then sum of these number is
(a) 4
(b) 5
(c) -4
(d) 9
Answer
Answer: (c) -4
Question 28.
Evaluate the determinant Δ = \(\left|\begin{array}{cc}
log_{3}512 & log_{4}3 \\
log_{3}8 & log_{4}9
\end{array}\right|\)
(a) \(\frac{15}{2}\)
(b) 12
(c) \(\frac{14}{3}\)
(d) 6
Answer
Answer: (a) \(\frac{15}{2}\)
Question 29.
\(\left|\begin{array}{cc}
x & -7 \\
x & 5 x+1
\end{array}\right|\)
(a) 3x² + 4
(b) x(5x + 8)
(c) 3x + 4x²
(d) x(3x + 4)
Answer
Answer: (b) x(5x + 8)
Question 30.
\( \left|\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \alpha
\end{array}\right|\)
(a) 0
(b) 1
(c) 2
(d) 3
Answer
Answer: (b) 1
Question 31.
\( \left|\begin{array}{ll}
\cos 15^{\circ} & \sin 15^{\circ} \\
\sin 75^{\circ} & \cos 75^{\circ}
\end{array}\right|\)
(a) 0
(b) 5
(c) 3
(d) 7
Answer
Answer: (a) 0
Question 32.
\(\left|\begin{array}{cc}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right|\)
(a) (a + b)²
(b) (a + b + c + d)²
(c) (a² + b² – c² – d²)
(d) a² + b² + c² + a²
Answer
Answer: (d) a² + b² + c² + a²
Question 33.
If \(\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|\) = \(k\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right|\) then k =
(a) 0
(b) 1
(c) 2
(d) 3
Answer
Answer: (c) 2
Question 34.
If \(\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|\) = k (a + b + c)³ then k is
(a) 0
(b) 1
(c) 2
(d) 3
Answer
Answer: (b) 1
Question 35.
\(\left|\begin{array}{lll}
a+1 & a+2 & a+4 \\
a+3 & a+5 & a+8 \\
a+7 & a+10 & a+14
\end{array}\right|\) =
(a) 2
(b) -2
(c) 4
(d) -4
Answer
Answer: (b) -2
Question 36.
If abc ≠ 0 and \(\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|\) = 0 then \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\) =
(a) 1
(b) 2
(c) -1
(d) -3
Answer
Answer: (c) -1
Question 37.
\(\left|\begin{array}{ccc}
2 x y & x^{2} & y^{2} \\
x^{2} & y^{2} & 2 x y \\
y^{2} & 2 x y & x^{2}
\end{array}\right|\) =
(a) (x³ + y³)²
(b) (x² + y²)³
(c) -(x² + y²)³
(d) -(x³ + y³)²
Answer
Answer: (d) -(x³ + y³)²
Question 38.
\(\left|\begin{array}{ccc}
b^{2} c^{2} & b c & b+c \\
c^{2} a^{2} & c a & c+a \\
a^{2} b^{2} & a b & a+b
\end{array}\right|\) =
(a) a7 + b7 + c7
(b) (a + b + c)7
(c) (a² + b² + c²) (a5 + b5 + c5)
(d) 0
Answer
Answer: (d) 0
Question 39.
If a, b, c are cube roots of unity, then
\(\left|\begin{array}{lll}
e^{a} & e^{2 a} & e^{3 a}-1 \\
e^{b} & e^{2 b} & e^{3 b}-1 \\
e^{c} & e^{2 c} & e^{3 c}-1
\end{array}\right|\) =
(a) 0
(b) e
(c) e²
(d) e³
Answer
Answer: (a) 0
Question 40.
The value of
\(\left|\begin{array}{ccc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) & \cos 2 \beta \\
\sin \alpha & \cos \alpha & \sin \beta \\
-\cos \alpha & \sin \alpha & \cos \beta
\end{array}\right|\)
is independent of
(a) α
(b) β
(c) α.β
(d) None of these
Answer
Answer: (a) α
Question 41.
If x is a complex root of the equation
\(\left|\begin{array}{lll}
1 & x & x \\
x & 1 & x \\
x & x & 1
\end{array}\right|\) + \(\left|\begin{array}{ccc}
1-x & 1 & 1 \\
1 & 1-x & 1 \\
1 & 1 & 1-x
\end{array}\right|\) = 0
then x2007 + x-2007 =
(a) 1
(b) -1
(c) -2
(d) 2
Answer
Answer: (c) -2
Question 42.
\(\left|\begin{array}{lll}
b-c & c-a & a-b \\
c-a & a-b & b-c \\
a-b & b-c & c-a
\end{array}\right|\) =
(a) 0
(b) 1
(c) 2
(d) 3
Answer
Answer: (a) 0
Question 43.
Let Δ = \(\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{3} & y^{3} & z^{3}
\end{array}\right|\) then the value of Δ is
(a) (x – y) (y- z)(z – x)
(b) xyz
(c) x² + y² + z²)²
(d) xyz (x – y)(y – z) (z – x)
Answer
Answer: (d) xyz (x – y)(y – z) (z – x)
Question 44.
The value of the determinant \(\left|\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2} \\
\beta+\gamma & \gamma+\alpha & \alpha+\beta
\end{array}\right|\)
(a) (α + β)(β + γ)(γ + α)
(b) (α – β)(β – γ) (γ – α) (α + β + γ)
(c) (α + β + γ)² (α – β – γ)²
(d) αβγ (α + β + γ)
Answer
Answer: (b) (α – β)(β – γ) (γ – α) (α + β + γ)