IB DP Further Mathematics – 1.2 Definition and properties of the inverse of a square matrix HL Paper 2

Question

The function \(f:\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}\) is defined by \(\boldsymbol{X} \mapsto \boldsymbol{AX}\) , where \(\boldsymbol{X} = \left[ \begin{array}{l}
x\\
y
\end{array} \right]\) and \(\boldsymbol{A} = \left[ \begin{array}{l}
a\\
c
\end{array} \right.\left. \begin{array}{l}
b\\
d
\end{array} \right]\) where \(a\) , \(b\) , \(c\) , \(d\) are all non-zero.

Consider the group \(\left\{ {S,{ + _m}} \right\}\) where \(S = \left\{ {0,1,2 \ldots m – 1} \right\}\) , \(m \in \mathbb{N}\) , \(m \ge 3\) and \({ + _m}\) denotes addition modulo \(m\) .

Show that \(f\) is a bijection if \(\boldsymbol{A}\) is non-singular.

[7]
A.a.

Suppose now that \(\boldsymbol{A}\) is singular.

  (i)     Write down the relationship between \(a\) , \(b\) , \(c\) , \(d\) .

  (ii)     Deduce that the second row of \(\boldsymbol{A}\) is a multiple of the first row of \(\boldsymbol{A}\) .

  (iii)     Hence show that \(f\) is not a bijection.

[5]
A.b.

Show that \(\left\{ {S,{ + _m}} \right\}\) is cyclic for all m .

[3]
B.a.

Given that \(m\) is prime,

  (i)     explain why all elements except the identity are generators of \(\left\{ {S,{ + _m}} \right\}\) ;

  (ii)     find the inverse of \(x\) , where x is any element of \(\left\{ {S,{ + _m}} \right\}\) apart from the identity;

  (iii)     determine the number of sets of two distinct elements where each element is the inverse of the other.

[7]
B.b.

Suppose now that \(m = ab\) where \(a\) , \(b\) are unequal prime numbers. Show that \(\left\{ {S,{ + _m}} \right\}\) has two proper subgroups and identify them.

[3]
B.c.
Answer/Explanation

Markscheme

recognizing that the function needs to be injective and surjective     R1

Note: Award R1 if this is seen anywhere in the solution.

injective:

let \(\boldsymbol{U}, \boldsymbol{V} \in ^\circ  \times ^\circ \) be 2-D column vectors such that \(\boldsymbol{AU} = \boldsymbol{AV}\)     M1

\({\boldsymbol{A}^{ – 1}}\boldsymbol{AU} = {\boldsymbol{A}^{ – 1}}\boldsymbol{AV}\)     M1

\(\boldsymbol{U} = \boldsymbol{V}\)     A1

this shows that \(f\) is injective

surjective:

let \(W \in ^\circ  \times ^\circ \)     M1

then there exists \(\boldsymbol{Z} = {\boldsymbol{A}^{ – 1}}\boldsymbol{W} \in ^\circ  \times ^\circ \) such that \(\boldsymbol{AZ} = \boldsymbol{W}\)     M1A1

this shows that \(f\) is surjective

therefore \(f\) is a bijection     AG

[7 marks]

A.a.

(i)     the relationship is \(ad = bc\)     A1

(ii)     it follows that \(\frac{c}{a} = \frac{d}{b} = \lambda \) so that \((c,d) = \lambda (a,b)\)     A1

(iii)     EITHER

let \(\boldsymbol{W} = \left[ \begin{array}{l}
p\\
q
\end{array} \right]\) be a 2-D vector

then \(\boldsymbol{AW} = \left[ \begin{array}{l}
a\\
\lambda a
\end{array} \right.\left. \begin{array}{l}
b\\
\lambda b
\end{array} \right]\left[ \begin{array}{l}
p\\
q
\end{array} \right]\)     M1

\( = \left[ \begin{array}{l}
ap + bq\\
\lambda (ap + bq)
\end{array} \right]\)    A1

the image always satisfies \(y = \lambda x\) so \(f\) is not surjective and therefore not a bijection     R1

OR

consider

\(\left[ {\begin{array}{*{20}{c}}
  a&b \\
  {\lambda a}&{\lambda b}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
  b \\
  0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
  {ab} \\
  {\lambda ab}
\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}
  a&b \\
  {\lambda a}&{\lambda b}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
  0 \\
  a
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
  {ab} \\
  {\lambda ab}
\end{array}} \right]\)

this shows that \(f\) is not injective and therefore not a bijection     R1

[5 marks]

A.b.

the identity element is \(0\)     R1

consider, for \(1 \le r \le m\) ,

using \(1\) as a generator     M1

\(1\) combined with itself \(r\) times gives \(r\) and as \(r\) increases from \(1\) to m, the group is generated ending with \(0\) when \(r = m\)     A1

it is therefore cyclic     AG

[3 marks]

B.a.

(i)     by Lagrange the order of each element must be a factor of \(m\) and if \(m\) is prime, its only factors are \(1\) and \(m\)     R1

since 0 is the only element of order \(1\), all other elements are of order \(m\) and are therefore generators     R1

(ii)     since \(x{ + _m}(m – x) = 0\)     (M1)

the inverse of x is \((m – x)\)     A1

(iii)     consider


     M1A1

there are \(\frac{1}{2}(m – 1)\) inverse pairs     A1 N1

Note: Award M1 for an attempt to list the inverse pairs, A1 for completing it correctly and A1 for the final answer.

[7 marks]

B.b.

since \(a\), \(b\) are unequal primes the only factors of \(m\) are \(a\) and \(b\)

there are therefore only subgroups of order \(a\) and \(b\)     R1

they are

\(\left\{ {0,a,2a, \ldots ,(b – 1)a} \right\}\)     A1

\(\left\{ {0,b,2b, \ldots ,(a – 1)b} \right\}\)     A1

[3 marks]

B.c.

Question

\(S\) is defined as the set of all \(2 \times 2\) non-singular matrices. \(A\) and \(B\) are two elements of the set \(S\).

(i)     Show that \({({A^T})^{ – 1}} = {({A^{ – 1}})^T}\).

(ii)     Show that \({(AB)^T} = {B^T}{A^T}\).

[8]
a.

A relation \(R\) is defined on \(S\) such that \(A\) is related to \(B\) if and only if there exists an element \(X\) of \(S\) such that \(XA{X^T} = B\). Show that \(R\) is an equivalence relation.

[8]
b.
Answer/Explanation

Markscheme

(i)     \(A = \left( {\begin{array}{*{20}{c}} a&b \\ c&d \end{array}} \right)\)

\({A^T} = \left( {\begin{array}{*{20}{c}} a&c \\ b&d \end{array}} \right)\)     M1

\({({A^T})^{ – 1}} = \frac{1}{{ad – bc}}\left( {\begin{array}{*{20}{c}} d&{ – c} \\ { – b}&a \end{array}} \right)\;\;\;\)(which exists because \(ad – bc \ne 0\))     A1

\({A^{ – 1}} = \frac{1}{{ad – bc}}\left( {\begin{array}{*{20}{c}} d&{ – b} \\ { – c}&a \end{array}} \right)\)     M1

\({({A^{ – 1}})^T} = \frac{1}{{ad – bc}}\left( {\begin{array}{*{20}{c}} d&{ – c} \\ { – b}&a \end{array}} \right)\)     A1

hence \({({A^T})^{ – 1}} = {({A^{ – 1}})^T}\) as required AG

(ii)     \(A = \left( {\begin{array}{*{20}{c}} a&b \\ c&d \end{array}} \right)\;\;\;B = \left( {\begin{array}{*{20}{c}} e&f \\ g&h \end{array}} \right)\)

\(AB = \left( {\begin{array}{*{20}{c}} {ae + bg}&{af + bh} \\ {ce + dg}&{cf + dh} \end{array}} \right)\)     M1

\({(AB)^T} = \left( {\begin{array}{*{20}{c}} {ae + bg}&{ce + dg} \\ {af + bh}&{cf + dh} \end{array}} \right)\)     A1

\({B^T} = \left( {\begin{array}{*{20}{c}} e&g \\ f&h \end{array}} \right)\;\;\;{A^T} = \left( {\begin{array}{*{20}{c}} a&c \\ b&d \end{array}} \right)\)     M1

\({B^T}{A^T} = \left( {\begin{array}{*{20}{c}} e&g \\ f&h \end{array}} \right)\left( {\begin{array}{*{20}{c}} a&c \\ b&d \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {ae + bg}&{ce + dg} \\ {af + bh}&{cf + dh} \end{array}} \right)\)     A1

hence \({(AB)^T} = {B^T}{A^T}\)     AG

a.

\(R\) is reflexive since \(I \in S\) and \(IA{I^T} = A\)     A1

\(XA{X^T} = B \Rightarrow A = {X^{ – 1}}B{({X^T})^{ – 1}}\)     M1A1

\( \Rightarrow A = {X^{ – 1}}B{({X^{ – 1}})^T}\) from a (i)     A1

which is of the correct form, hence symmetric     AG

\(ARB \Rightarrow XA{X^T} = B\) and \(BRC = YB{Y^T} = C\)     M1

Note: Allow use of \(X\) rather than \(Y\) in this line.

\( \Rightarrow YXA{X^T}{Y^T} = YB{Y^T} = C\)     M1A1

\( \Rightarrow (YX)A{(YX)^T} = C\) from a (ii)     A1

this is of the correct form, hence transitive

hence \(R\) is an equivalence relation     AG

b.
Scroll to Top