IB DP Further Mathematics -2.5 Finding equations of loci HL Paper 2

Question

The area of an equilateral triangle is \(1\) cm2. Determine the area of:

The points A, B have coordinates (\(1\), \(0\)), (\(0\), \(1\)) respectively. The point P(\(x\), \(y\)) moves in such a way that \({\rm{AP}} = k{\rm{BP}}\) where \(k \in {\mathbb{R}^ + }\) .

the circumscribed circle.

[8]
A.a.

the inscribed circle.

[3]
A.b.

When \(k = 1\) , show that the locus of P is a straight line.

[3]
B.a.

When \(k \ne 1\) , the locus of P is a circle.

  (i)     Find, in terms of \(k\) , the coordinates of C, the centre of this circle.

  (ii)     Find the equation of the locus of C as \(k\) varies.

[9]
B.b.
Answer/Explanation

Markscheme

consider the above diagram – [AD] and [BE] are the medians and O is therefore both the incentre and the circumcentre     (R1)

let \({\rm{AB}} = d\) and let \(R\) denote the radius of the circumcircle

then,

\(R = {\rm{AO}} = {\rm{AE}}\sec {30^ \circ }\)     M1

\( = \frac{d}{2} \times \frac{2}{{\sqrt 3 }} = \frac{d}{{\sqrt 3 }}\)     (A1)

area of circumcircle \( = \pi {R^2} = \frac{{\pi {d^2}}}{3}\)     A1

area of triangle \({\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{AB}}{\rm{.AC}}\sin {\rm{BAC}}\)     M1

\( = \frac{{\sqrt 3 {d^2}}}{4}\)     (A1)

\(\frac{{\sqrt 3 {d^2}}}{4} = 1 \Rightarrow {d^2} = \frac{4}{{\sqrt 3 }}\)     A1

area of circumcircle \( = \frac{{4\pi }}{{3\sqrt 3 }}\) (\(2.42\))     A1

[8 marks]

A.a.

let \(r\) denote the radius of the incircle

then

\(r = {\rm{OE}} = {\rm{AE}}\tan {30^ \circ }\)     M1

\( = \frac{d}{{2\sqrt 3 }}\)     (A1)

area of incircle \( = \pi {r^2} = \frac{{\pi {d^2}}}{{12}}\)

\( = \frac{\pi }{{3\sqrt 3 }}\) (\(0.605\))     A1

[3 marks]

A.b.

\({\rm{A}}{{\rm{P}}^2} = {(x – 1)^2} + {y^2}\) and \({\rm{B}}{{\rm{P}}^2} = {x^2} + {(y – 1)^2}\)     A1

\({x^2} – 2x + 1 + {y^2} = {x^2} + {y^2} – 2y + 1\)     M1

\(y = x\) which is the equation of a straight line     A1

[3 marks]

B.a.

(i)     \({x^2} – 2x + 1 + {y^2} = {k^2}({x^2} + {y^2} – 2y + 1)\)     M1

\(({k^2} – 1){x^2} + ({k^2} – 1){y^2} + 2x – 2{k^2}y + {k^2} – 1 = 0\)     A1

\({x^2} + {y^2} + \frac{{2x}}{{{k^2} – 1}} – \frac{{2{k^2}y}}{{{k^2} – 1}} + 1 = 0\)     A1

by completing the squares or quoting the standard result,     M1

coordinates of C are

\(\left( { – \frac{1}{{{k^2} – 1}},\frac{{{k^2}}}{{{k^2} – 1}}} \right)\)     A1

(ii)     let (\(x\), \(y\)) be the coordinates of C

attempting to find \(k\) or \({{k^2}}\) ,     (M1)

\({k^2} = 1 – \frac{1}{x}\)     (A1)

\(y = \frac{{1 – \frac{1}{x}}}{{ – \frac{1}{x}}}\)     (M1)

\(y = 1 – x\)     A1

[9 marks]

B.b.
Scroll to Top