IB DP Further Mathematics – 2.6 Tangents and normals HL Paper 2

Question

Consider the ellipse having equation \({x^2} + 3{y^2} = 2\).

(i)     Find the equation of the tangent to the ellipse at the point \(\left( {1,{\text{ }}\frac{1}{{\sqrt 3 }}} \right)\).

(ii)     Find the equation of the normal to the ellipse at the point \(\left( {1,{\text{ }}\frac{1}{{\sqrt 3 }}} \right)\).

[7]
a.

Given that the tangent crosses the \(x\)-axis at P and the normal crosses the \(y\)-axis at Q, find the equation of (PQ).

[4]
b.

Hence show that (PQ) touches the ellipse.

[4]
c.

State the coordinates of the point where (PQ) touches the ellipse.

[1]
d.

Find the coordinates of the foci of the ellipse.

[4]
e.

Find the equations of the directrices of the ellipse.

[1]
f.
Answer/Explanation

Markscheme

(i)     \(2x + 6y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     M1

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – \frac{x}{{3y}}\)     A1

gradient of tangent is \( – \frac{{\sqrt 3 }}{3}\)     A1

equation of tangent is \(y – \frac{1}{{\sqrt 3 }} =  – \frac{{\sqrt 3 }}{3}(x – 1)\)     M1A1

\(\left( { \Rightarrow y =  – \frac{{\sqrt 3 }}{3}x + \frac{{\sqrt 3 }}{3} + \frac{1}{{\sqrt 3 }} \Rightarrow y =  – \frac{{\sqrt 3 }}{3}x + \frac{2}{{\sqrt 3 }}} \right)\)

(ii)     gradient of normal is \(\sqrt 3 \)     A1

equation of normal is \(y – \frac{1}{{\sqrt 3 }} = \sqrt 3 (x – 1)\)     A1

\(\left( { \Rightarrow y = x\sqrt 3  – \sqrt 3  + \frac{1}{{\sqrt 3 }} \Rightarrow y = \sqrt 3 x – \frac{2}{{\sqrt 3 }}} \right)\)

a.

coordinates of P are \((2,{\text{ }}0)\)     A1

coordinates of Q are \(\left( {0,{\text{ }} – \frac{2}{{\sqrt 3 }}} \right)\)     A1

equation of (PQ) is \(\frac{{y – 0}}{{x – 2}} = \frac{{\frac{2}{{\sqrt 3 }}}}{2}\)     M1

\( \Rightarrow y = \frac{1}{{\sqrt 3 }}(x – 2)\)     A1

b.

substitute equation of (PQ) into equation of ellipse

\({x^2} + 3{\left( {\frac{{x – 2}}{{\sqrt 3 }}} \right)^2} = 2\)     M1A1

\( \Rightarrow {x^2} + {x^2} – 4x + 4 = 2\)

\( \Rightarrow {(x – 1)^2} = 0\)     A1

since the equation has two equal roots (PQ) touches the ellipse     R1

c.

\(\left( {1,{\text{ }} – \frac{1}{{\sqrt 3 }}} \right)\)     A1

d.

\({x^2} + 3{y^2} = 2\)

\(\frac{{{x^2}}}{2} + \frac{{{y^2}}}{{\frac{2}{3}}} = 1\)

\( \Rightarrow a = \sqrt 2 ,{\text{ }}b = \sqrt {\frac{2}{3}} \)     A1

EITHER

\({b^2} = {a^2}(1 – {e^2})\)

\(\frac{2}{3} = 2(1 – {e^2})\)     M1

\( \Rightarrow e = \sqrt {\frac{2}{3}} \)     A1

coordinates of foci are \(( \pm ae,{\text{ }}0) \Rightarrow \left( {\frac{2}{{\sqrt 3 }},{\text{ }}0} \right),{\text{ }}\left( { – \frac{2}{{\sqrt 3 }},{\text{ }}0} \right)\)     A1

OR

\({f^2} = {a^2} – {b^2}\)     M1

\({f^2} = 4 – \frac{2}{3}\)     A1

coordinates of foci are \(\left( {\frac{2}{{\sqrt 3 }},{\text{ }}0} \right),{\text{ }}\left( { – \frac{2}{{\sqrt 3 }},{\text{ }}0} \right)\)     A1

Note: Award accuracy marks if \({a^2}\), \({b^2}\) and \({e^2}\) are given.

e.

EITHER

equations of directrices are \(x =  \pm \frac{a}{e} \Rightarrow x = \sqrt 3 ,{\text{ }}x =  – \sqrt 3 \)     A1

OR

\(d = \frac{{{a^2}}}{f} \Rightarrow x = \sqrt 3 ,{\text{ }}x =  – \sqrt 3 \)     A1

f.

Question

Consider the ellipse \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).

The area enclosed by the ellipse is \(8\pi \) and \(b = 2\).

Show that the area enclosed by the ellipse is \(\pi ab\).

[9]
a.

Determine which coordinate axis the major axis of the ellipse lies along.

[2]
b.i.

Hence find the eccentricity.

[2]
b.ii.

Find the coordinates of the foci.

[2]
b.iii.

Find the equations of the directrices.

[2]
b.iv.

The centre of another ellipse is now given as the point (2, 1). The minor and major axes are of lengths 3 and 5 and are parallel to the \(x\) and \(y\) axes respectively. Find the equation of the ellipse.

[3]
c.
Answer/Explanation

Markscheme

\(A = 4\int {y{\text{d}}x} \)      (M1)

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1 \Rightarrow \)

\(y = \frac{{b\sqrt {{a^2} – {x^2}} }}{a}\)      (A1)

let \(x = a\,{\text{cos}}\,\theta  \Rightarrow y = b\,{\text{sin}}\,\theta \)      M1

\(\frac{{{\text{d}}x}}{{{\text{d}}\theta }} =  – a\,{\text{sin}}\,\theta \)      A1

when \(x = 0,\,\,\theta  = \frac{\pi }{2}\). When \(x = a,\,\,\theta  = 0\)       A1

\( \Rightarrow A = 4\int_{\frac{\pi }{2}}^0 {b\,{\text{sin}}\,\theta } \left( { – a\,{\text{sin}}\,\theta } \right){\text{d}}\theta \)      M1

\( \Rightarrow A =  – 4ab\int_{\frac{\pi }{2}}^0 {\,{\text{si}}{{\text{n}}^2}\,\theta } \,{\text{d}}\theta \)

\( \Rightarrow A =  – 2ab\int_{\frac{\pi }{2}}^0 {\,\left( {1 – \,{\text{cos}}\,2\theta } \right)} \,{\text{d}}\theta \)      M1

\( \Rightarrow A =  – 2ab\left[ {\theta  – \frac{{{\text{sin}}\,2\theta }}{2}} \right]_{\frac{\pi }{2}}^0\)     A1

\( \Rightarrow A =  – 2ab\left[ {0 – 0 – \left( {\frac{\pi }{2} – 0} \right)} \right]\)     M1

\( \Rightarrow A = \pi ab\)      AG

[9 marks]

a.

\(b = 2\)

hence \(2\pi a = 8\pi  \Rightarrow a = 4\)      A1

hence major axis lies along the x-axis      A1

[2 marks]

b.i.

\({b^2} = {a^2}\left( {1 – {e^2}} \right)\)      (M1)

\(4 = 16\left( {1 – {e^2}} \right) \Rightarrow e = \frac{{\sqrt 3 }}{2}\)      A1

[2 marks]

b.ii.

coordinates of foci are \(\left( { \pm ae,\,0} \right) = \left( {2\sqrt 3 ,\,0} \right),\,\left( { – 2\sqrt 3 ,\,0} \right)\)      A1A1

[2 marks]

b.iii.

equations of directrices are \(x =  \pm \frac{a}{e} = \frac{8}{{\sqrt 3 }},\, – \frac{8}{{\sqrt 3 }}\)      A1A1

[2 marks]

b.iv.

\(a = \frac{3}{2},\,b = \frac{5}{2}\)     (A1)

hence equation is \(\frac{4}{9}{\left( {x – 2} \right)^2} + \frac{4}{{25}}{\left( {y – 1} \right)^2} = 1\)     M1A1

[3 marks]

c.

Examiners report

[N/A]

a.

[N/A]

b.i.

[N/A]

b.ii.

[N/A]

b.iii.

[N/A]

b.iv.

[N/A]

c.
Scroll to Top