IB DP Further Mathematics -3.1 Cumulative distribution functions for both discrete and continuous distributions HL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The discrete random variables \({X_n},{\text{ }}n \in {\mathbb{Z}^ + }\) have probability generating functions given by \({G_n}(t) = \frac{t}{n}\left( {\frac{{{t^n} – 1}}{{t – 1}}} \right)\).

Let \({X_{n – 1}}\) and \({X_{n + 1}}\) be independent.

Use the formula for the sum of a finite geometric series to show that

\[{\text{P}}({X_n} = k) = \left\{ {\begin{array}{*{20}{l}} {\frac{1}{n}}&{{\text{for }}1 \leqslant k \leqslant n} \\ 0&{{\text{otherwise}}} \end{array}.} \right.\]

[4]
a.

Find \({\text{E}}({X_n})\).

[3]
b.

Find the set of values of \(n\) for which \({\text{E}}({X_{n – 1}} \times {X_{n + 1}}) < 2n\).

[4]
c.
Answer/Explanation

Markscheme

using \(\left( {\frac{{{t^n} – 1}}{{t – 1}}} \right) = 1 + t + {t^2} +  \ldots {t^{n – 1}}\)     M1

\({G_n}(t) = 0 + \frac{t}{n} + \frac{{{t^2}}}{n} + \frac{{{t^3}}}{n} +  \ldots \frac{{{t^n}}}{n} + 0 \times {t^{n + 1}} + 0 \times  \ldots \)    A1A1

Note:     A1 for the non-zero terms, A1 for the observation that all other terms are zero.

the statement that the coefficient of \({t^k}\) gives \({\text{P}}({X_n} = k)\)     R1

hence \({\text{P}}({X_n} = k) = \left\{ {\begin{array}{*{20}{l}} {\frac{1}{n}}&{{\text{for }}1 \leqslant k \leqslant n} \\ 0&{{\text{otherwise}}} \end{array}} \right.\)       AG

[4 marks]

a.

\({\text{E}}({X_n}) = 0 \times 0 + 1 \times \frac{1}{n} + 2 \times \frac{1}{n} + 3 \times \frac{1}{n} +  \ldots n \times \frac{1}{n} + (n + 1) \times 0 +  \ldots  \times 0\)     (M1)(A1)

\( = \frac{1}{n} \times \sum\limits_{k = 1}^{k = n} k \)

\( = \frac{1}{n} \times \frac{1}{2}n(n + 1) = \frac{{n + 1}}{2}\)    A1

Note:     Accept use of \(G'(1)\).

[3 marks]

b.

\({X_{n – 1}}\) and \({X_{n + 1}}\) are independent \( \Rightarrow {\text{E}}({X_{n – 1}} \times {X_{n + 1}}) = {\text{E}}({X_{n – 1}}) \times {\text{E}}({X_{n + 1}})\)     M1

\( = \frac{n}{2} \times \frac{{n + 2}}{2}\)  A1

required to solve \({n^2} < 6n{\text{ }}({\text{or }}n + 2 < 8)\)     M1

solution: \((2 \leqslant ){\text{ }}n < 6\)     A1

[4 marks]

c.
Scroll to Top