IB DP Further Mathematics -4.7 The definition of a group {G,∗} HL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Show that the set \(S\) of numbers of the form \({2^m} \times {3^n}\) , where \(m,n \in \mathbb{Z}\) , forms a group \(\left\{ {S, \times } \right\}\) under multiplication.

[6]
a.

Show that \(\left\{ {S, \times } \right\}\) is isomorphic to the group of complex numbers \(m + n{\rm{i}}\) under addition, where \(m\), \(n \in \mathbb{Z}\) .

[6]
b.
Answer/Explanation

Markscheme

Closure: Consider the numbers \({2^{{m_1}}} \times {3^{{m_1}}}\) and \({2^{{m_2}}} \times {3^{{n_2}}}\) where     M1

\({m_1},{m_2},{n_1},{n_2}, \in \mathbb{Z}\) . Then,

Product \( = {2^{{m_1} + {m_2}}} \times {3^{{n_1} + {n_2}}}\) which \( \in S\)     A1

Identity: \({2^0} \times {3^0} = 1 \in S\)     A1

Since \(({2^m} \times {3^n}) \times ({2^{ – m}} \times {3^{ – n}}) = 1\) and \({2^{ – m}} \times {3^{ – n}} \in S\)     R1

then \({2^{ – m}} \times {3^{ – n}}\) is the inverse.     A1

Associativity: This follows from the associativity of multiplication.     R1

[6 marks]

a.

Consider the bijection

\(f({2^m} \times {3^n}) = m + n{\rm{i}}\)    (M1)

Then

\(f({2^{{m_1}}} \times {3^{{n_1}}}) \times ({2^{{m_2}}} \times {3^{{n_2}}}) = f({2^{{m_1} + {m_2}}} \times {3^{{n_1} + {n_2}}})\)     M1A1

\( = {m_1} + {m_2} + ({n_1} + {n_2}){\rm{i}}\)     A1

\( = ({m_1} + {n_1}{\rm{i}}) + ({m_2} + {n_2}{\rm{i}})\)     (A1)

\( = f({2^{{m_1}}} \times {3^{{n_1}}}) + f({2^{{m_2}}} \times {3^{{n_2}}})\)     A1

[6 marks]

b.

Question

The set \({{\rm{S}}_1} = \left\{ {2,4,6,8} \right\}\) and \({ \times _{10}}\) denotes multiplication modulo \(10\).

  (i)     Write down the Cayley table for \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) .

  (ii)     Show that \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) is a group.

  (iii)     Show that this group is cyclic.

[8]
a.

Now consider the group \(\left\{ {{{\rm{S}}_1},{ \times _{20}}} \right\}\) where \({{\rm{S}}_2} = \left\{ {1,9,11,19} \right\}\) and \({{ \times _{20}}}\) denotes multiplication modulo \(20\). Giving a reason, state whether or not \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) and \(\left\{ {{{\rm{S}}_1},{ \times _{20}}} \right\}\) are isomorphic.

[3]
b.
Answer/Explanation

Markscheme

(i)

     A2

Note: Award A1 for one error.

(ii)     closure: it is closed because no new elements are formed     A1

identity: \(6\) is the identity element    A1

inverses: \(4\) is self-inverse and (\(2\), \(8\)) form an inverse pair     A1

associativity: multiplication is associative     A1

the four group axioms are satisfied

(iii)     any valid reason, e.g.

\(2\) (or \(8\)) has order \(4\), or \(2\) (or \(8\)) is a generator     A2

[8 marks]

a.

the groups are not isomorphic     A1

any valid reason, e.g. \({{\rm{S}}_2}\) is not cyclic or all its elements are self-inverse     R2

[3 marks]

b.

Question

\(G\) is a group. The elements \(a,b \in G\) , satisfy \({a^3} = {b^2} = e\) and \(ba = {a^2}b\) , where \(e\) is the identity element of \(G\) .

Show that \({(ba)^2} = e\) .

[3]
a.

Express \({(bab)^{ – 1}}\) in its simplest form.

[3]
b.

Given that \(a \ne e\) ,

  (i)     show that \(b \ne e\) ;

  (ii)     show that \(G\) is not Abelian.

[6]
c.
Answer/Explanation

Markscheme

EITHER

\(baba = ba{a^2}b\)     M1

\( = b{a^3}b\)     (A1)

\( = {b^2}\)     A1

\( = e\)     AG

OR

\(baba = {a^2}bba\)     M1

\( = {a^2}{b^2}a\)      (A1)

\( = {a^3}\)     A1

\( = e\)     AG

[3 marks]

a.

\(bab = {a^2}bb\)     (M1)

\( = {a^2}\)     (A1)

\({(bab)^{ – 1}} = a\)     A1

[3 marks]

b.

(i)     assume \(b = e\)     M1

then \(a = {a^2}\)     A1

\( \Rightarrow a = e\) which is a contradiction     R1

(ii)     if \(ab = ba\)     M1

then \(ab = {a^2}b\)     A1

\( \Rightarrow a = e\) which is a contradiction     R1 

[6 marks]

c.

Question

Consider the set \(S = \{ 0,{\text{ }}1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5\} \) under the operation of addition modulo \(6\), denoted by \({ + _6}\).

Construct the Cayley table for \(\{ S,{\text{ }}{ + _6}\} \).

[2]
a.

Show that \(\{ S,{\text{ }}{ + _6}\} \) forms an Abelian group.

[5]
b.

State the order of each element.

[2]
c.

Explain whether or not the group is cyclic.

[2]
d.
Answer/Explanation

Markscheme

    A2

Note: A1 for one or two errors in the table, A0 otherwise.

a.

closed no new elements     A1

\(0\) is identity (since \(0 + a = a + 0 = a,{\text{ }}a \in S\))     A1

\(0\), \(3\) self inverse, \(1 \Leftrightarrow 5\) inverse pair, \(2 \Leftrightarrow 4\) inverse pair     A1

all elements have an inverse

associativity is assumed over addition     A1

since symmetry on leading diagonal in table or commutativity of addition     A1

\( \Rightarrow \{ S,{\text{ }}{ + _6}\} \) is an Abelian group     AG

b.

    A2

Note: A1 for one or two errors in the table, A0 otherwise.

c.

since there is an element with order \(6\) OR \(1\) or \(5\) are generators     R1

the group is cyclic A1

d.

Question

The transformations T1, T2, T3, T4, in the plane are defined as follows:

T1 : A rotation of 360° about the origin
T2 : An anticlockwise rotation of 270° about the origin
T3 : A rotation of 180° about the origin
T4 : An anticlockwise rotation of 90° about the origin.

The transformation T5 is defined as a reflection in the \(x\)-axis.

The transformation T is defined as the composition of T3 followed by T5 followed by T4.

Copy and complete the following Cayley table for the transformations of T1T2T3T4, under the operation of composition of transformations.

[2]
a.

Show that T1T2T3T4 under the operation of composition of transformations form a group. Associativity may be assumed.

[3]
b.i.

Show that this group is cyclic.

[1]
b.ii.

Write down the 2 × 2 matrices representing T3, T4 and T5.

[3]
c.

Find the 2 × 2 matrix representing T.

[2]
d.i.

Give a geometric description of the transformation T.

[1]
d.ii.
Answer/Explanation

Markscheme

      A2

[2 marks]

Note: Award A1 for 6, 7 or 8 correct.

a.

the table is closed – no new elements      A1

T1 is the identity      A1

T3 (and T1) are self-inverse; T2 and T4 are an inverse pair. Hence every element has an inverse      A1

hence it is a group      AG

[3 marks]

b.i.

all elements in the group can be generated by T2 (or T4)       R1

hence the group is cyclic      AG

[1 mark]

b.ii.

T3 is represented by \(\left( {\begin{array}{*{20}{c}}
{ – 1}&0 \\
0&{ – 1}
\end{array}} \right)\)      A1

T4 is represented by \(\left( {\begin{array}{*{20}{c}}
0&{ – 1} \\
1&0
\end{array}} \right)\)      A1

T5 is represented by \(\left( {\begin{array}{*{20}{c}}
1&0 \\
0&{ – 1}
\end{array}} \right)\)      A1

[3 marks]

c.

\(\left( {\begin{array}{*{20}{c}}
0&{ – 1} \\
1&0
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&0 \\
0&{ – 1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{ – 1}&0 \\
0&{ – 1}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ – 1} \\
{ – 1}&0
\end{array}} \right)\)       (M1)A1

Note: Award M1A0 for multiplying the matrices in the wrong order.

[2 marks]

d.i.

a reflection in the line \(y =  – x\)      A1

[1 mark]

d.ii.

Question

The set \(S\) contains the eight matrices of the form\[\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right)\]where \(a\), \(b\), \(c\) can each take one of the values \( + 1\) or \( – 1\) .

Show that any matrix of this form is its own inverse.

[3]
a.

Show that \(S\) forms an Abelian group under matrix multiplication.

[9]
b.

Giving a reason, state whether or not this group is cyclic.

[1]
c.
Answer/Explanation

Markscheme

\(\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a^2}}&0&0\\
0&{{b^2}}&0\\
0&0&{{c^2}}
\end{array}} \right)\)     A1M1

\( = \left( {\begin{array}{*{20}{c}}
1&0&0\\
0&1&0\\
0&0&1
\end{array}} \right)\)     A1

this shows that each matrix is self-inverse

[3 marks]

a.

closure:

\(\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_1}{a_2}}&0&0\\
0&{{b_1}{b_2}}&0\\
0&0&{{c_1}{c_2}}
\end{array}} \right)\)     M1A1

\( = \left( {\begin{array}{*{20}{c}}
{{a_3}}&0&0\\
0&{{b_3}}&0\\
0&0&{{c_3}}
\end{array}} \right)\)

where each of \({a_3}\), \({b_3}\), \({c_3}\) can only be \( \pm 1\)     A1

this proves closure

identity: the identity matrix is the group identity     A1

inverse: as shown above, every element is self-inverse     A1

associativity: this follows because matrix multiplication is associative     A1

\(S\) is therefore a group     AG

Abelian:

\(\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_2}{a_1}}&0&0\\
0&{{b_2}{b_1}}&0\\
0&0&{{c_2}{c_1}}
\end{array}} \right)\)     A1

\(\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_1}{a_2}}&0&0\\
0&{{b_1}{b_2}}&0\\
0&0&{{c_1}{c_2}}
\end{array}} \right)\)     A1

Note: Second line may have been shown whilst proving closure, however a reference to it must be made here.

we see that the same result is obtained either way which proves commutativity so that the group is Abelian      R1

[9 marks]

b.

since all elements (except the identity) are of order \(2\), the group is not cyclic (since \(S\) contains \(8\) elements)     R1

[1 mark]

c.
Scroll to Top