IB DP Further Mathematics -4.7 The definition of a group {G,∗} HL Paper 2

Question

The relation \(R\) is defined for \(x,y \in {\mathbb{Z}^ + }\) such that \(xRy\) if and only if \({3^x} \equiv {3^y}(\bmod 10)\) .

  (i)     Show that \(R\) is an equivalence relation.

  (ii)     Identify all the equivalence classes.

[11]
a.

Let \(S\) denote the set \(\left\{ {x\left| {x = a + b\sqrt 3 ,a,b \in \mathbb{Q},{a^2} + {b^2} \ne 0} \right.} \right\}\) .

  (i)     Prove that \(S\) is a group under multiplication.

  (ii)     Give a reason why \(S\) would not be a group if the conditions on \({a,b}\) were changed to \({a,b \in \mathbb{R},{a^2} + {b^2} \ne 0}\) .

[15]
b.
Answer/Explanation

Markscheme

(i)     \({3^x} \equiv {3^x}(\bmod 10) \Rightarrow xRx\) so R is reflexive.     R1

\(xRy \Rightarrow {3^x} \equiv {3^y}(\bmod 10) \Rightarrow {3^y} \equiv {3^x}(\bmod 10) \Rightarrow yRx\)

so \(R\) is symmetric.     R2

\(xRy\) and \(yRz \Rightarrow {3^x} – {3^y} = 10M\) and \({3^y} – {3^z} = 10N\)

Adding \({3^x} – {3^z} = 10(M + N) \Rightarrow {3^x} \equiv {3^z}(\bmod 10)\) hence transitive     R2

(ii)     Consider \({3^1} = 3,{3^2} = 9,{3^3} = 27,{3^4} = 81,{3^5} = 243\) , etc.     (M2)

It is evident from this sequence that there are 4 equivalence classes,

\(1\), \(5\), \(9\), …     A1

\(2\), \(6\), \(10\), …     A1

\(3\), \(7\), \(11\), …     A1

\(4\), \(8\), \(12\), …     A1  

[11 marks]

a.

(i)     Consider \(a + b\sqrt 3 \) \(c + d\sqrt 3 \) \( = (ac + 3bd) + (bc + ad)\sqrt 3 \)     M1A1

This establishes closure since products of rational numbers are rational.     R1

Since if \(a\) and \(b\) are not both zero and \(c\) and \(d\) are not both zero, it follows that \(ac + 3bd\) and \(bc + ad\) are not both zero.     R1

The identity is \(1( \in S)\) .     R1

Consider \(a + b{\sqrt 3 ^{ – 1}} = \frac{1}{{a + b\sqrt 3 }}\)     M1A1

\( = \frac{1}{{a + b\sqrt 3 }} \times \frac{{a – b\sqrt 3 }}{{a – b\sqrt 3 }}\)     A1

\( = \frac{a}{{({a^2} – 3{b^2})}} \times \frac{b}{{({a^2} – 3{b^2})}}\sqrt 3 \)     A1

This inverse \( \in S\) because \({({a^2} – 3{b^2})}\) cannot equal zero since \(a\) and \(b\) cannot both be zero     R1

and \(({a^2} – 3{b^2}) = 0\) would require \(\frac{a}{b} =  \pm \sqrt 3 \) which is impossible because a rational number cannot equal \(\sqrt 3 \) .     R2

Finally, multiplication of numbers is associative.     R1

 

(ii)     If \(a\) and \(b\) are both real numbers, \(a + b\sqrt 3 \) would have no inverse if \({a^2} = 3{b^2}\) . R2  

[15 marks]

b.

Question

A group has exactly three elements, the identity element \(e\) , \(h\) and \(k\) . Given the operation is denoted by \( \otimes \) , show that

(i)     Show that \({\mathbb{Z}_4}\) (the set of integers modulo 4) together with the operation \({ + _4}\) (addition modulo 4) form a group \(G\) . You may assume associativity.

(ii)     Show that \(G\) is cyclic.

[9]
A.a.

Using Cayley tables or otherwise, show that \(G\) and \(H = \left( {\left\{ {1,2,3,\left. 4 \right\},{ \times _5}} \right.} \right)\) are isomorphic where \({{ \times _5}}\) is multiplication modulo 5. State clearly all the possible bijections.

[7]
A.b.

the group is cyclic.

[3]
B.b.

the group is cyclic.

[5]
b.
Answer/Explanation

Markscheme

(i)

     A2

Note: Award A1 for table if exactly one error and A0 if more than one error.

all elements belong to \({\mathbb{Z}_4}\) so it is closed     A1

\(0\) is the identity element     A1

\(2\) is self inverse     A1

\(1\) and \(3\) are an inverse pair     A1

hence every element has an inverse

hence \(\left\{ {{\mathbb{Z}_4},{ + _4}} \right\}\) form a group \(G\)     AG

(ii)     \(1{ + _4}1 \equiv 2(\bmod 4)\)

\(1{ + _4}1{ + _4}1 \equiv 3(\bmod 4)\)

\(1{ + _4}1{ + _4}1{ + _4}1 \equiv 0(\bmod 4)\)     M1A1

hence \(1\) is a generator     R1

therefore \(G\) is cyclic     AG

(\(3\) is also a generator)

[9 marks]

A.a.

      A1A1

EITHER

for the group \(\left( {\left\{ {1,2,3,\left. 4 \right\},{ \times _5}} \right.} \right)\)

\(1\) is the identity and \(4\) is self inverse     A1

\(2\) and \(3\) are an inverse pair     A1

OR

for \(G\),              for \(H\),

0 has order 1       1 has order 1

1 has order 4       2 has order 4

2 has order 2       3 has order 4

3 has order 4       4 has order 2     A1A1

THEN

hence there is a bijection     R1

\(h(1) \to 0\) , \(h(2) \to 1\) , \(h(3) \to 3\) , \(h(4) \to 2\)     A1

the groups are isomorphic     AG

\(k(1) \to 0\) , \(k(2) \to 3\) , \(k(3) \to 1\) , \(k(4) \to 2\)     A1

is also a bijection

[7 marks]

A.b.

if cyclic then the group is {\(e\), \(h\), \({h^2}\)}     R1

\({h^2} = e\) or \(h\) or \(k\)     M1

\({h^2} = e \Rightarrow h \otimes h = h \otimes k\)

\( \Rightarrow h = k\)

but \(h \ne k\) so \({h^2} \ne e\)     A1

\({h^2} = h \Rightarrow h \otimes h = h \otimes e \Rightarrow h = e\)

but \(h \ne e\) so \({h^2} \ne h\)

so \({h^2} = k\)     A1

also \({h^3} = h \otimes k = e\)

hence the group is cyclic     AG

Note: An alternative proof is possible based on order of elements and Lagrange.

[5 marks]

B.b.

if cyclic then the group is \(\left\{ {e,h,\left. {{h^2}} \right\}} \right.\)     R1

\({h^2} = e\) or \(h\) or \(k\)     M1

\({h^2} = e \Rightarrow h \otimes h = h \otimes k\)

\( \Rightarrow h = k\)

but \(h \ne k\) so \({h^2} \ne e\)     A1

\({h^2} = h \Rightarrow h \otimes h = h \otimes e \Rightarrow h = e\)

but \(h \ne e\) so \({h^2} \ne h\)

so \({h^2} = k\)     A1

also \({h^3} = h \otimes k = e\)     A1

hence the group is cyclic     AG

Note: An alternative proof is possible based on order of elements and Lagrange.

[5 marks]

b.

Question

The binary operator \( * \) is defined for a , \(b \in \mathbb{R}\) by \(a * b = a + b – ab\) .

(i)     Show that \( * \) is associative.

(ii)      Find the identity element.

(iii)     Find the inverse of \(a \in \mathbb{R}\) , showing that the inverse exists for all values of \(a\) except one value which should be identified.

(iv)     Solve the equation \(x * x = 1\) .

[15]
a.

The domain of \( * \) is now reduced to \(S = \left\{ {0,2,3,4,5,\left. 6 \right\}} \right.\) and the arithmetic is carried out modulo \(7\).

  (i)     Copy and complete the following Cayley table for \(\left\{ {S,\left.  *  \right\}} \right.\) .


  (ii)     Show that \(\left\{ {S,\left.  *  \right\}} \right.\) is a group.

  (iii)     Determine the order of each element in S and state, with a reason, whether or not \(\left\{ {S,\left.  *  \right\}} \right.\) is cyclic.

  (iv)     Determine all the proper subgroups of \(\left\{ {S,\left.  *  \right\}} \right.\) and explain how your results illustrate Lagrange’s theorem.

  (v)     Solve the equation \(2 * x * x = 5\) .

[17]
b.
Answer/Explanation

Markscheme

(i)     \(a * (b * c) = a * (b + c – bc)\)     M1

\( = a + b + c – bc – a(b + c – bc)\)     A1

\( = a + b + c – bc – ca – ab + abc\)     A1

\((a * b) * c = (a + b – ab) * c\)     M1

\( = a + b – ab + c – (a + b – ab)c\)     A1

\( = a + b + c – bc – ca – ab + abc\) , hence associative     AG

(ii)     let \(e\) be the identity element, so that \(a * e = a\)     (M1)

then,

\(a + e – ae = a\)     A1

\(e(1 – a) = 0\)

\(e = 0\)     A1

(iii)     let \({a^{ – 1}}\) be the inverse of \(a\), so that \(a * {a^{ – 1}} = 0\)     (M1)

then,

\(a + {a^{ – 1}} – a{a^{ – 1}} = 0\)     A1

\({a^{ – 1}} = \frac{a}{{a – 1}}\)     A1

this gives an inverse for all elements except 1 which has no inverse     R1

(iv)     \(2x – {x^2} = 1\)     M1

\({(x – 1)^2} = 0\)     (A1)

\(x = 1\)     A1  

[15 marks]

a.

(i)

     A3

Note: Award A3 for correct table, A2 for one error, A1 for two errors and A0 for more than two errors.

(ii)     there are no new elements in the table so it is closed     A1

there is an identity element, \(0\)     A1

every row (column) has a \(0\) so every element has an inverse     A1

associativity has been proved earlier     A1

therefore \(\left\{ {S,\left.  *  \right\}} \right.\) is a group     AG  

(iii)

     A3

Note: Award A3 for correct table, A2 for one error, A1 for two errors and A0 for more than two errors.

it is cyclic because there are elements of order \(6\)     R1

(iv)     the proper subgroups are \(\left\{ {0,\left. 2 \right\}} \right.\) , \(\left\{ {0,\left. {4,6} \right\}} \right.\)     A1A1

the orders of the subgroups (\(2\), \(3\)) are factors of the order of the group (6)     A1

(v)     recognizing \(x * x = 4\)     (M1)

\(x = 3\) , \(6\)     A1A1

[17 marks]

b.

Question

(i)     Draw the Cayley table for the set \(S = \left\{ {0,1,2,3,4,\left. 5 \right\}} \right.\) under addition modulo six \(({ + _6})\) and hence show that \(\left\{ {S, + \left. {_6} \right\}} \right.\) is a group.

(ii)     Show that the group is cyclic and write down its generators.

(iii)     Find the subgroup of \(\left\{ {S, + \left. {_6} \right\}} \right.\) that contains exactly three elements.

[11]
a.

Prove that a cyclic group with exactly one generator cannot have more than two elements.

[4]
b.

\(H\) is a group and the function \(\Phi :H \to H\) is defined by \(\Phi (a) = {a^{ – 1}}\) , where \({a^{ – 1}}\) is the inverse of a under the group operation. Show that \(\Phi \) is an isomorphism if and only if H is Abelian.

[9]
c.
Answer/Explanation

Markscheme

(i)

the table is closed    A1

the identity is \(0\)     A1

\(0\) is in every row and column once so each element has a unique inverse     A1

addition is associative     A1

therefore \(\left\{ {S, + \left. {_6} \right\}} \right.\) is a group     R1

(ii)     \(1 + 1 + 1 + 1 + 1 + 1 = 0\)     M1

\(1 + 1 + 1 + 1 + 1 = 5\)

\(1 + 1 + 1 + 1 = 4\)

\(1 + 1 + 1 = 3\)

\(1 + 1 = 2\)

so \(1\) is a generator of \(\left\{ {S, + \left. {_6} \right\}} \right.\) and the group is cyclic     A1

(since \(5\) is the additive inverse of \(1\)) \(5\) is also a generator     A1

(iii)     \(\left\{ {0,2,\left. 4 \right\}} \right.\)     A1 

[11 marks]

a.

if \(a\) is a generator of group \((G, * )\) then so is \({a^{ – 1}}\)     A1

if \((G, * )\) has exactly one generator \(a\) then \(a = {a^{ – 1}}\)     A1

so \({a^2} = e\) and \(G = \left\{ {e,\left. a \right\}} \right.\) \(\left\{ {\left. e \right\}} \right.\)     A1R1

so cyclic group with exactly one generator cannot have more than two elements     AG

[4 marks]

b.

every element of a group has a unique inverse so \(\Phi \) is a bijection     A1

\(\Phi (ab) = {(ab)^{ – 1}} = {b^{ – 1}}{a^{ – 1}}\)     M1A1

if \(H\) is Abelian then it follows that

\({b^{ – 1}}{a^{ – 1}} = {a^{ – 1}}{b^{ – 1}} = \Phi (a)\Phi (b)\)     A1

so \(\Phi \) is an isomorphism     R1

if \(\Phi \) is an isomorphism, then     M1

for all \(a,b \in H\) , \(\Phi (ab) = \Phi (a)\Phi (b)\)     M1

\({(ab)^{ – 1}} = {a^{ – 1}}{b^{ – 1}}\)

\( \Rightarrow {b^{ – 1}}{a^{ – 1}} = {a^{ – 1}}{b^{ – 1}}\)    A1

so \(H\) is Abelian     R1

[9 marks]

c.

Question

The set \(S\) consists of real numbers r of the form \(r = a + b\sqrt 2 \) , where \(a,b \in \mathbb{Z}\) .

The relation \(R\) is defined on \(S\) by \({r_1}R{r_2}\) if and only if \({a_1} \equiv {a_2}\) (mod2) and \({b_1} \equiv {b_2}\) (mod3), where \({r_1} = {a_1} + {b_1}\sqrt 2 \) and \({r_2} = {a_2} + {b_2}\sqrt 2 \) .

Show that \(R\) is an equivalence relation.

[7]
a.

Show, by giving a counter-example, that the statement \({r_1}R{r_2} \Rightarrow r_1^2Rr_2^2\) is false.

[3]
b.

Determine

(i)     the equivalence class \(E\) containing \(1 + \sqrt 2 \) ;

(ii)     the equivalence class \(F\) containing \(1 – \sqrt 2 \) .

[3]
c.

Show that

(i)     \({(1 + \sqrt 2 )^3} \in F\) ;

(ii)     \({(1 + \sqrt 2 )^6} \in E\) .

[4]
d.

Determine whether the set \(E\) forms a group under

  (i)     the operation of addition;

  (ii)     the operation of multiplication.

[4]
e.
Answer/Explanation

Markscheme

reflexive: if \({r_{}} = {a_{}} + {b_{}}\sqrt 2  \in S\) then \(a \equiv a(\bmod 2)\) and \(b \equiv b(\bmod 3)\)

\(( \Rightarrow rRr)\)     A1

symmetric: if \({r_1}R{r_2}\) then \({a_1} \equiv {a_2}(\bmod 2)\) and \({b_1} \equiv {b_2}(\bmod 3)\) , and     M1

\({a_2} \equiv {a_1}(\bmod 2)\) and \({b_2} \equiv {b_1}(\bmod 3)\) , (so that \({r_2}R{r_1}\) )     A1

transitive: if \({r_1}R{r_2}\) and \({r_2}R{r_3}\) then

\(2|{a_1} – {a_2}\) and \(2|{a_2} – {a_3}\)     M1

\( \Rightarrow 2|{a_1} – {a_2} + {a_2} – {a_3} \Rightarrow 2|{a_1} – {a_3}\)     M1A1

\(3|{b_1} – {b_2}\) and \(3|{b_2} – {b_3}\)

\( \Rightarrow 3|{b_1} – {b_2} + {b_2} – {b_3} \Rightarrow 3|{b_1} – {b_3}( \Rightarrow {r_1}R{r_3})\)     A1AG

[7 marks]

a.

consider, for example, \({r_1} = 1 + \sqrt 2 \) , \({r_2} = 3 + \sqrt 2 \) \(({r_1}R{r_2})\)     M1

Note: Only award M1 if the two numbers are related and neither \(a\) nor \(b = 0\) .

\(r_1^2 = 3 + 2\sqrt 2 \) , \(r_2^2 = 11 + 6\sqrt 2 \)     A1

the squares are not equivalent because \(2 \ne 6(\bmod 3)\)     A1

[3 marks]

b.

(i)     \(E = \left\{ {2k + 1 + (3m + 1)\sqrt 2 } :k,m \in \mathbb{Z} \right\}\)     A1A1

(ii)     \(F = \left\{ {2k + 1 + (3m – 1)\sqrt 2 } :k,m \in \mathbb{Z} \right\}\)     A1 

[3 marks]

c.

(i)     \({(1 + \sqrt 2 )^3} = 7 + 5\sqrt 2 \)     A1

\( = 2 \times 3 + 1 + (3 \times 2 – 1)\sqrt 2  \in F\)     R1AG 

(ii)     \({(1 + \sqrt 2 )^6} = 99 + 70\sqrt 2 \)     A1

\( = 2 \times 49 + 1 + (3 \times 23 + 1)\sqrt 2  \in E\)     R1AG

[4 marks]

d.

(i)     \(E\) is not a group under addition     A1

any valid reason eg \(0 \notin E\)     R1 

(ii)     \(E\) is not a group under multiplication     A1

any valid reason eg \(1 \notin E\)     R1 

[4 marks]

e.

Question

The set \(S\) contains the eighth roots of unity given by \(\left\{ {{\text{cis}}\left( {\frac{{n\pi }}{4}} \right),{\text{ }}n \in \mathbb{N},{\text{ }}0 \leqslant n \leqslant 7} \right\}\).

(i)     Show that \(\{ S,{\text{ }} \times \} \) is a group where \( \times \) denotes multiplication of complex numbers.

(ii)     Giving a reason, state whether or not \(\{ S,{\text{ }} \times \} \) is cyclic.

Answer/Explanation

Markscheme

(i)     closure: let \({a_1} = {\text{cis}}\left( {\frac{{{n_1}\pi }}{4}} \right)\) and \({a_2} = {\text{cis}}\left( {\frac{{{n_2}\pi }}{4}} \right) \in S\)     M1

then \({a_1} \times {a_2} = {\text{cis}}\left( {\frac{{({n_1} + {n_2})\pi }}{4}} \right)\) (which \( \in S\) because the addition is carried out modulo 8)     A1

identity: the identity is 1 (and corresponds to \(n = 0\))     A1

inverse: the inverse of \({\text{cis}}\left( {\frac{{n\pi }}{4}} \right)\) is \({\text{cis}}\left( {\frac{{(8 – n)\pi }}{4}} \right) \in S\)     A1

associatively: multiplication of complex numbers is associative     A1

the four group axioms are satisfied so \(S\) is a group     AG

(ii)     \(S\) is cyclic     A1

because \({\text{cis}}\left( {\frac{\pi }{4}} \right)\), for example, is a generator     R1

[7 marks]

Question

The binary operation multiplication modulo \(9\), denoted by \({ \times _9}\) , is defined on the set \(S = \left\{ {1,2,3,4,5,6,7,8} \right\}\) .

Copy and complete the following Cayley table.



[3]
a.

Show that \(\left\{ {S,{ \times _9}} \right\}\) is not a group.

[1]
b.

Prove that a group \(\left\{ {G,{ \times _9}} \right\}\) can be formed by removing two elements from the set \(S\) .

[5]
c.

(i)     Find the order of all the elements of \(G\) .

(ii)     Write down all the proper subgroups of \(\left\{ {G,{ \times _9}} \right\}\) .

(iii)     Determine the coset containing the element \(5\) for each of the subgroups in part (ii).

[8]
d.

Solve the equation \(4{ \times _9}x{ \times _9}x = 1\) .

[3]
e.
Answer/Explanation

Markscheme

     A3

Note: Award A2 if one error, A1 if two errors and A0 if three or more errors.

[3 marks]

a.

any valid reason,     R1

e.g.  not closed

\(3\) or \(6\) has no inverse,

it is not a Latin square

[1 mark]

b.

remove \(3\) and \(6\)     A1

for the remaining elements,

the table is closed     R1

associative because multiplication is associative     R1

the identity is \(1\)     A1

every element has an inverse, (\(2\), \(5\)) and (\(4\), \(7\)) are inverse pairs and \(8\) (and \(1\)) are self-inverse     A1

thus it is a group     AG

[5 marks]

c.

(i)     the orders are

     A3

Note: Award A2 if one error, A1 if two errors and A0 if three or more errors.

(ii)     the proper subgroups are

\(\left\{ {1,8} \right\}\)     A1

\(\left\{ {1,4,7} \right\}\)     A1

Note: Do not penalize inclusion of \(\left\{ 1 \right\}\) . 

(iii)     the cosets are \(\left\{ {5,4} \right\}\)     (M1)A1

\(\left\{ {5,2,8} \right\}\)     A1 

[8 marks]

d.

\(x{ \times _9}x = 7\)     (A1)

\(x = 4,5\)     A1A1

[3 marks]

e.
Scroll to Top