IB DP Further Mathematics – 4.9 Cyclic groups HL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The set \({{\rm{S}}_1} = \left\{ {2,4,6,8} \right\}\) and \({ \times _{10}}\) denotes multiplication modulo \(10\).

  (i)     Write down the Cayley table for \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) .

  (ii)     Show that \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) is a group.

  (iii)     Show that this group is cyclic.

[8]
a.

Now consider the group \(\left\{ {{{\rm{S}}_1},{ \times _{20}}} \right\}\) where \({{\rm{S}}_2} = \left\{ {1,9,11,19} \right\}\) and \({{ \times _{20}}}\) denotes multiplication modulo \(20\). Giving a reason, state whether or not \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) and \(\left\{ {{{\rm{S}}_1},{ \times _{20}}} \right\}\) are isomorphic.

[3]
b.
Answer/Explanation

Markscheme

(i)

     A2

Note: Award A1 for one error. 

(ii)     closure: it is closed because no new elements are formed     A1

identity: \(6\) is the identity element    A1

inverses: \(4\) is self-inverse and (\(2\), \(8\)) form an inverse pair     A1

associativity: multiplication is associative     A1

the four group axioms are satisfied 

(iii)     any valid reason, e.g.

\(2\) (or \(8\)) has order \(4\), or \(2\) (or \(8\)) is a generator     A2

[8 marks]

a.

the groups are not isomorphic     A1

any valid reason, e.g. \({{\rm{S}}_2}\) is not cyclic or all its elements are self-inverse     R2

[3 marks]

b.

Question

Consider the set \(S = \{ 0,{\text{ }}1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5\} \) under the operation of addition modulo \(6\), denoted by \({ + _6}\).

Construct the Cayley table for \(\{ S,{\text{ }}{ + _6}\} \).

[2]
a.

Show that \(\{ S,{\text{ }}{ + _6}\} \) forms an Abelian group.

[5]
b.

State the order of each element.

[2]
c.

Explain whether or not the group is cyclic.

[2]
d.
Answer/Explanation

Markscheme

    A2

Note: A1 for one or two errors in the table, A0 otherwise.

a.

closed no new elements     A1

\(0\) is identity (since \(0 + a = a + 0 = a,{\text{ }}a \in S\))     A1

\(0\), \(3\) self inverse, \(1 \Leftrightarrow 5\) inverse pair, \(2 \Leftrightarrow 4\) inverse pair     A1

all elements have an inverse

associativity is assumed over addition     A1

since symmetry on leading diagonal in table or commutativity of addition     A1

\( \Rightarrow \{ S,{\text{ }}{ + _6}\} \) is an Abelian group     AG

b.

    A2

Note: A1 for one or two errors in the table, A0 otherwise.

c.

since there is an element with order \(6\) OR \(1\) or \(5\) are generators     R1

the group is cyclic A1

d.

Question

The set \(S\) contains the eight matrices of the form\[\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right)\]where \(a\), \(b\), \(c\) can each take one of the values \( + 1\) or \( – 1\) .

Show that any matrix of this form is its own inverse.

[3]
a.

Show that \(S\) forms an Abelian group under matrix multiplication.

[9]
b.

Giving a reason, state whether or not this group is cyclic.

[1]
c.
Answer/Explanation

Markscheme

\(\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a^2}}&0&0\\
0&{{b^2}}&0\\
0&0&{{c^2}}
\end{array}} \right)\)     A1M1

\( = \left( {\begin{array}{*{20}{c}}
1&0&0\\
0&1&0\\
0&0&1
\end{array}} \right)\)     A1

this shows that each matrix is self-inverse

[3 marks]

a.

closure:

\(\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_1}{a_2}}&0&0\\
0&{{b_1}{b_2}}&0\\
0&0&{{c_1}{c_2}}
\end{array}} \right)\)     M1A1

\( = \left( {\begin{array}{*{20}{c}}
{{a_3}}&0&0\\
0&{{b_3}}&0\\
0&0&{{c_3}}
\end{array}} \right)\)

where each of \({a_3}\), \({b_3}\), \({c_3}\) can only be \( \pm 1\)     A1

this proves closure

identity: the identity matrix is the group identity     A1

inverse: as shown above, every element is self-inverse     A1

associativity: this follows because matrix multiplication is associative     A1

\(S\) is therefore a group     AG

Abelian:

\(\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_2}{a_1}}&0&0\\
0&{{b_2}{b_1}}&0\\
0&0&{{c_2}{c_1}}
\end{array}} \right)\)     A1

\(\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_1}{a_2}}&0&0\\
0&{{b_1}{b_2}}&0\\
0&0&{{c_1}{c_2}}
\end{array}} \right)\)     A1

Note: Second line may have been shown whilst proving closure, however a reference to it must be made here.

we see that the same result is obtained either way which proves commutativity so that the group is Abelian      R1

[9 marks]

b.

since all elements (except the identity) are of order \(2\), the group is not cyclic (since \(S\) contains \(8\) elements)     R1

[1 mark]

c.
Scroll to Top