IB DP Further Mathematics 5.5 HL Paper 2

Question

The function \(f(x)\) is defined by the series \(f(x) = 1 + \frac{{(x + 2)}}{{3 \times 1}} + \frac{{{{(x + 2)}^2}}}{{{3^2} \times 2}} + \frac{{{{(x + 2)}^3}}}{{{3^3} \times 3}} +  \ldots \) .

Write down the general term.

[1]
A.a.

Find the interval of convergence.

[13]
A.b.

Solve the differential equation \((u + 3{v^3})\frac{{{\rm{d}}v}}{{{\rm{d}}u}} = 2v\) , giving your answer in the form \(u = f(v)\) .

[8]
B.
Answer/Explanation

Markscheme

the general term is \(\frac{{{{(x + 2)}^n}}}{{{3^n}n}}\)      A1

[1 mark]

A.a.

\(\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{{a_{n + 1}}}}{{{a_n}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left[ {\frac{{{{(x + 2)}^{n + 1}}}}{{{3^{n + 1}}(n + 1)}} \times \frac{{{3^n}n}}{{{{(x + 2)}^n}}}} \right]\)     M1A1A1

\( = \mathop {\lim }\limits_{n \to \infty } \left[ {\frac{{(x + 2){n^{}}}}{{3(n + 1)}}} \right]\)     A1

\( = \frac{{(x + 2)}}{3}\) since \( = \mathop {\lim }\limits_{n \to \infty } \left[ {\frac{{{n^{}}}}{{n + 1}}} \right] = 1\)     A1R1

the series is convergent if \(\left| {\frac{{(x + 2)}}{3}} \right| < 1\)    R1

then \( – 3 < x + 2 < 3 \Rightarrow  – 5 < x < 1\)     A1

if \(x = – 5\) , series is \(1 – 1 + \frac{1}{2} – \frac{1}{3} +  \ldots  + \frac{{{{( – 1)}^n}}}{n} +  \ldots \) which converges     M1A1

if \(x = 1\) , series is \(1 + 1 + \frac{1}{2} + \frac{1}{3} +  \ldots  + \frac{1}{n} +  \ldots \) which diverges     M1A1

the interval of convergence is \( – 5 \le x < 1\)     A1

[13 marks]

A.b.

\((u + 3{v^3})\frac{{{\rm{d}}v}}{{{\rm{d}}u}} = 2v\)

\(\frac{{{\rm{d}}u}}{{{\rm{d}}v}} = \frac{{(u + 3{v^3})}}{{2v}} = \frac{u}{{2v}} + \frac{{3{v^2}}}{2}\)     M1A1

\(\frac{{{\rm{d}}u}}{{{\rm{d}}v}} – \frac{u}{{2v}} = \frac{{3{v^2}}}{2}\)     A1

IF is \({{\rm{e}}^{\int {\frac{1}{{2v}}} {\rm{d}}v}} = {{\rm{e}}^{\frac{1}{2}\ln v}}\)     M1

\( = {v^{\frac{1}{2}}}\)     A1

\(\frac{u}{{\sqrt v }} = \int {\frac{{3{v^{\frac{3}{2}}}}}{2}} {\rm{d}}v\)     M1

\( = \frac{3}{5}{v^{\frac{5}{2}}} + c\)     A1

\(u = \frac{3}{5}{v^3} + c\sqrt v \)     A1

[8 marks]

B.

Question

Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\tan x = 2{\cos ^4}x\) given that \(y = 1\) when \(x = 0\).

(a)     Solve the differential equation, giving your answer in the form \(y = f(x)\).

(b)     (i)     By differentiating both sides of the differential equation, show that

\[\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y =  – 10\sin x{\cos ^3}x\]

(ii)     Hence find the first four terms of the Maclaurin series for \(y\).

Answer/Explanation

Markscheme

(a)     integrating factor \( = {e^{\int {\tan x{\text{d}}x} }}\)     M1

\( = {{\text{e}}^{\ln \sec x}}\)     A1

\( = \sec x\)     A1

\(\sec x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\sec x\tan x = 2{\cos ^3}x\)     (M1)

integrating,

\(y\sec x = 2\int {{{\cos }^3}x{\text{d}}x} \)     A1

\( = 2\int {\cos x(1 – {{\sin }^2}x){\text{d}}x} \)     A1

\( = 2\left( {\sin x – \frac{{{{\sin }^3}x}}{3}} \right) + C\)     A1

Note: Condone the absence of \(C\).

(substituting \(x = 0,{\text{ }}y = 1\))

\(1 = C\)     M1

the solution is

\(y = 2\cos x\left( {\sin x – \frac{{{{\sin }^3}x}}{3}} \right) + \cos x\)     A1

[9 marks]

 

(b)     (i)     differentiating the equation,

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y{\sec ^2}x + \tan x\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 8{\cos ^3}x\sin x\)     A1A1

Note: A1 for each side.

substituting for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\),

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y{\sec ^2}x + \tan x\left( {2{{\cos }^4}x – y\tan x} \right) =  – 8{\cos ^3}x\sin x\)     A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y({\sec ^2}x – {\tan ^2}x) =  – 8{\cos ^3}x\sin x – 2\tan x{\cos ^4}x\) (or equivalent)     A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y =  – 10\sin x{\cos ^3}x\)     AG

(ii)     differentiating again,

\(\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} + \frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 10{\cos ^4}x + {\text{term involving }} \sin x\)     A1

it follows that

\(y(0) = 1,{\text{ }}y'(0) = 2\)     A1

\(y”(0) =  – 1,{\text{ }}y”'(0) =  – 12\)     A1

attempting to use \(y = y(0) + xy'(0) + \frac{{{x^2}}}{2}y”(0) + \frac{{{x^3}}}{6}y”'(0) +  \ldots \)     (M1)

\(y = 1 + 2x – \frac{{{x^2}}}{2} – 2{x^3}\)     A1

[9 marks]

Question

Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2x + y – 1\) with boundary condition \(y = 1\) when \(x = 0\).

Using Euler’s method with increments of \(0.2\), find an approximate value for \(y\) when \(x = 1\).

[5]
a.

Explain how Euler’s method could be improved to provide a better approximation.

[1]
b.

Solve the differential equation to find an exact value for \(y\) when \(x = 1\).

[9]
c.

(i)     Find the first three non-zero terms of the Maclaurin series for \(y\).

(ii)     Hence find an approximate value for \(y\) when \(x = 1\).

[5]
d.
Answer/Explanation

Markscheme

    (M1)(A1)(A1)(A1)

Note: Award M1 for equivalent of setting up first row of table, A1 for each of row 2, 3 and 5.

approximate solution \(y = 1.98\)     A1

a.

make the increments smaller or any specific correct instruction – for example change increment from \(0.2\) to \(0.1\)     A1

b.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} – y = 2x – 1\)

integrating factor is \({{\text{e}}^{\int { – 1{\text{d}}x} }} = {{\text{e}}^{ – x}}\)     (M1)(A1)

\(\frac{{\text{d}}}{{{\text{d}}x}}(y{{\text{e}}^{ – x}}) = {{\text{e}}^{ – x}}(2x – 1)\)     M1

attempt at integration by parts of \(\int {{{\text{e}}^{ – x}}(2x – 1){\text{d}}x} \)     (M1)

\( =  – (2x – 1){{\text{e}}^{ – x}} + \int {2{{\text{e}}^{ – x}}{\text{d}}x} \)     A1

\( =  – (2x – 1){{\text{e}}^{ – x}} – 2{{\text{e}}^{ – x}}( + c)\)     A1

\(y{{\text{e}}^{ – x}} =  – (1 + 2x){{\text{e}}^{ – x}} + c\)

\(y =  – (1 + 2x) + c{{\text{e}}^x}\)

when \(x = 0,{\text{ }}y = 1 \Rightarrow c = 2\)     M1

\(y =  – (1 + 2x) + 2{{\text{e}}^{ – x}}\)     A1

when \(x = 1,{\text{ }}y =  – 3 + 2{\text{e}}\)     A1

c.

(i)     METHOD 1

\(f(0) = 1,{\text{ }}f'(0) = 0\)     A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2 + \frac{{{\text{d}}y}}{{{\text{d}}x}} \Rightarrow {f^2}(0) = 2\)     A1

\(\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = \frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} \Rightarrow {f^3}(0) = 2\)     A1

hence \(y = 1 + {x^2} + \frac{{{x^3}}}{3} +  \ldots \)     A1

Note: Accuracy marks are independent of each other.

METHOD 2

using Maclaurin series for \({{\text{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} +  \ldots \)     M1

\(y =  – 1 – 2x + 2\left( {1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} +  \ldots } \right)\)     M1A1

\(y = 1 + {x^2} + \frac{{{x^3}}}{3} +  \ldots \)     A1

(ii)     when \(x = 1,{\text{ }}y = 1 + 1 + \frac{1}{3} = \frac{7}{3} = 2.33\)     A1

d.

Question

Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{x}{y}\), where \(y \ne 0\).

Find the general solution of the differential equation, expressing your answer in the form \(f(x,{\text{ }}y) = c\), where \(c\) is a constant.

[3]
a.

(i)     Hence find the particular solution passing through the points \((1,{\rm{  \pm }}\sqrt 2 )\).

(ii)     Sketch the graph of your solution and name the type of curve represented.

[5]
b.

(i)     Write down the particular solution passing through the points \((1,{\text{ }} \pm 1)\).

(ii)     Give a geometrical interpretation of this solution in relation to part (b).

[3]
c.

(i)     Find the general solution of the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{x}{y} + \frac{y}{x}\), where \(xy \ne 0\).

(ii)     Find the particular solution passing through the point \((1,{\text{ }}\sqrt 2 )\).

(iii)     Sketch the particular solution.

(iv)     The graph of the solution only contains points with \(\left| x \right| > a\).

Find the exact value of \(a,{\text{ }}a > 0\).

[12]
d.
Answer/Explanation

Markscheme

attempt to separate the variables     M1

\(\int {y\frac{{{\text{d}}y}}{{{\text{d}}x}}{\text{d}}x = \int {x{\text{d}}x} } \)    A1

Note:     Accept \(\int {y{\text{d}}y = \int {x{\text{d}}x} } \).

obtain \(\frac{1}{2}{y^2} = \frac{1}{2}{x^2} + {\text{ constant }}( \Rightarrow {y^2} – {x^2} = c)\)     A1

[3 marks]

a.

(i)     substitute the coordinates for both points     M1

\({( \pm \sqrt 2 )^2} – {1^2} = 1\)

obtain \({y^2} – {x^2} = 1\) or equivalent     A1

(ii)     M16/5/FURMA/HP2/ENG/TZ0/04.b.ii/M     A1A1

Note:     A1 for general shape including two branches and symmetry;

A1 for values of the intercepts.

(rectangular) hyperbola     A1

[5 marks]

b.

(i)     \({y^2} – {x^2} = 0\)     A1

(ii)     the two straight lines \(y =  \pm x\)     A1

form the asymptotes to the hyperbola found above, or equivalent     A1

[3 marks]

c.

(i)     the equation is homogeneous, so attempt to substitute \(y = vx\)     M1

as a first step write \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x\frac{{{\text{d}}v}}{{{\text{d}}x}} + v\)     (A1)

then \(x\frac{{{\text{d}}v}}{{{\text{d}}x}} + v = \frac{1}{v} + v\)     A1

attempt to solve the resulting separable equation     M1

\(\int {v{\text{d}}v = \int {\frac{1}{x}{\text{d}}x} } \)    A1

obtain \(\frac{1}{2}{v^2} = \ln \left| x \right| + {\text{ constant}} \Rightarrow {y^2} = 2{x^2}\ln \left| x \right| + c{x^2}\)     A1

(ii)     substituting the coordinates     (M1)

obtain \(c = 2 \Rightarrow {y^2} = 2{x^2}\ln \left| x \right| + 2{x^2}\)     A1

(iii)     M16/5/FURMA/HP2/ENG/TZ0/04.d.iii/M     A1

(iv)     since \({y^2} > 0\) and \({x^2} \ne 0\)     R1

\(\ln \left| x \right| >  – 1 \Rightarrow \left| x \right| > {{\text{e}}^{ – 1}}\)    A1

\(a = {{\text{e}}^{ – 1}}\)    A1

Note:     The R1 may be awarded for a correct reason leading to subsequent correct work.

[12 marks]

d.

Question

Consider the differential equation

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\tan x = 2{\sec ^2}x,{\text{ }}0 \leqslant x < \frac{\pi }{2}\), given that \(y = 1\) when \(x = 0\).

By considering integration as the reverse of differentiation, show that for

\(0 \leqslant x < \frac{\pi }{2}\)

\[\int {\sec x{\text{d}}x = \ln (\sec x + \tan x) + C.} \]

[4]
a.i.

Hence, using integration by parts, show that

\[\int {{{\sec }^3}x{\text{d}}x = \frac{1}{2}\left( {\sec x\tan x + \ln (\sec x + \tan x)} \right) + C.} \]

[4]
a.ii.

Find an integrating factor and hence solve the differential equation, giving your answer in the form \(y = f(x)\).

[9]
b.i.

Starting with the differential equation, show that

\[\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y = 2{\sec ^2}x\tan x.\]

[3]
b.ii.

Hence, by using your calculator to draw two appropriate graphs or otherwise, find the \(x\)-coordinate of the point of inflection on the graph of \(y = f(x)\).

[4]
b.iii.
Answer/Explanation

Markscheme

\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {\ln (\sec x + \tan x)} \right) = \frac{{\sec x\tan x + {{\sec }^2}x}}{{\sec x + \tan x}}\)     M1

\( = \sec x\)     A1

therefore \(\int {\sec x{\text{d}}x = \ln (\sec x + \tan x) + C} \)     AG

[4 marks]

a.i.

\(\int {{{\sec }^3}x{\text{d}}x = \int {\sec x \times {{\sec }^2}x{\text{d}}x} } \)     M1

\( = \sec x\tan x – \int {\sec x{{\tan }^2}x{\text{d}}x} \)     A1A1

\( = \sec x\tan x – \int {\sec x({{\sec }^2}x – 1){\text{d}}x} \)     A1

\( = \sec x\tan x – \int {{{\sec }^3}x{\text{d}}x + \int {\sec x{\text{d}}x} } \)

\( = \sec x\tan x – \int {{{\sec }^3}x{\text{d}}x + \ln (\sec x + \tan x)} \)     A1

\(2\int {{{\sec }^3}x{\text{d}}x = \left( {\sec x\tan x + \ln (\sec x + \tan x)} \right)} \)     A1

therefore

\(\int {{{\sec }^3}x{\text{d}}x = \frac{1}{2}\left( {\sec x\tan x + \ln (\sec x + \tan x)} \right) + C} \)     AG

[4 marks]

a.ii.

\({\text{int factor}} = {{\text{e}}^{\int {\tan x{\text{d}}x} }}\)     (M1)

\( = {{\text{e}}^{\ln \sec x}}\)     (A1)

\( = \sec x\)     A1

the differential equation can be written as

\(\frac{{\text{d}}}{{{\text{d}}x}}(y\sec x) = 2{\sec ^3}x\)     M1A1

integrating,

\(y\sec x = \sec x\tan x + \ln (\sec x + \tan x) + C\)     A1

putting \(x = 0,{\text{ }}y = 1,\)     M1

\(C = 1\)     A1

the solution is \(y = \cos x\left( {\sec x\tan x + \ln (\sec x + \tan x) + 1} \right)\)     A1

[??? marks]

b.i.

differentiating the differential equation,

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + \frac{{{\text{d}}y}}{{{\text{d}}x}}\tan x + y{\sec ^2}x = 4{\sec ^2}x\tan x\)     A1A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + (2{\sec ^2}x – y\tan x)\tan x + y{\sec ^2}x = 4{\sec ^2}x\tan x\)     A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y = 2{\sec ^2}x\tan x\)     AG

[??? marks]

b.ii.

at a point of inflection, \(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 0\) so \(y = 2{\sec ^2}x\tan x\)     (M1)

therefore the point of inflection can be found as the point of intersection of the graphs of \(y = \cos x\left( {\sec x\tan x + \ln (\sec x + \tan x) + 1} \right)\)

and \(y = 2{\sec ^2}x\tan x\)     (M1)

drawing these graphs on the calculator, \(x = 0.605\)     A2

[??? marks]

b.iii.

Question

It is given that \(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = \left( {x + 5y} \right)\) and that when \(x = 0,\,\,y = 2\).

Use Euler’s method with step length 0.1 to find an approximate value of \(y\) when \(x = 0.4\).

[5]
a.

Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 – {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\).

[3]
b.i.

Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  – 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} – 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\).

[4]
b.ii.

Find the Maclaurin expansion for \(y\) up to and including the term in \({{x^3}}\).

[5]
b.iii.
Answer/Explanation

Markscheme

Euler’s method with step length \(h = 0.1\) to find \(y\) when \(x = 0.4\)

Note: Accept 3 significant figures in the table.

first line of table       (M1)(A1)

line 2        (A1)

line 3        (A1)

hence \(y\) = 3.65       A1

Note: Accept any answer that rounds to 3.65.

[5 marks]

a.

\(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + 5y\)

\(\left( {5 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 + 5\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1A1A1

Note: Award M1 for a valid attempt to differentiate, A1 for LHS, A1 for RHS.

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 + 5\frac{{{\text{d}}y}}{{{\text{d}}x}} – 5\frac{{{\text{d}}y}}{{{\text{d}}x}} – {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 – {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)      AG

[3 marks]

b.i.

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}1 – {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)

\(\left( {5 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + \left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  – 2\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)     M1A1A1A1

\(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  – 2\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right) – 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} – \left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)

\(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  – 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} – 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)     AG

[4 marks]

b.ii.

when \(x = 0\,\,\,y = 2\)

when \(x = 0\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = 5\)      A1

when \(x = 0\,\,\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} =  – 12\)      A1

when \(x = 0\,\,\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = 120\)      A1

Note: Allow follow through from incorrect values of derivatives.

\(y = 2 + 5x – 6{x^2} + 20{x^3}\)      M1A1

[5 marks]

b.iii.

Question

Draw slope fields for the following cases for \( – 2 \leqslant x \leqslant 2,\,\, – 2 \leqslant y \leqslant 2\)

Explain what isoclines tell you about the slope field in the following case:

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2\).

[2]
a.i.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + 1\).

[2]
a.ii.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x – 1\).

[2]
a.iii.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \) constant.

[1]
b.i.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = f\left( x \right)\).

[1]
b.ii.

The slope field for the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + y\) for \( – 4 \leqslant x \leqslant 4,\,\, – 4 \leqslant y \leqslant 4\) is shown in the following diagram.

Explain why the slope field indicates that the only linear solution is \(y =  – x – 1\).

[2]
c.

Given that all the isoclines from a slope field of a differential equation are straight lines through the origin, find two examples of the differential equation.

[4]
d.
Answer/Explanation

Markscheme

     A2

[2 marks]

a.i.

   A2

[2 marks]

a.ii.

   A2

[2 marks]

a.iii.

the slope is the same everywhere     A1

[1 mark]

b.i.

all points that have the same \(x\) coordinate have the same slope    A1

[1 mark]

b.ii.

this is where a straight line appears on the slope field        A1

There is no other straight line, all the other solutions are curves        A1

[2 marks]

c.

given \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = f\left( {x,\,y} \right)\), the isoclines are \(f\left( {x,\,y} \right) = k\)      (M1)

here the isoclines are \(y = kx\) (or \(x = ky\))     (A1)

any two differential equations of the correct form, for example

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ky}}{x},\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{kx}}{y},\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = {\text{sin}}\left( {\frac{y}{x}} \right),\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = {\text{sin}}\left( {\frac{x}{y}} \right)\)      A1A1

[4 marks]

d.

Question

Consider the differential equation\[\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\sec x = x(\sec x – \tan x),{\text{ where }}y = 3{\text{ when }}x = 0.\]

Use Euler’s method with a step length of \(0.1\) to find an approximate value for \(y\) when \(x = 0.3\) .

[5]
a.

(i)     By differentiating the above differential equation, obtain an expression involving \(\frac{{{{\rm{d}}^{\rm{2}}}y}}{{{\rm{d}}{x^2}}}\) .

(ii)     Hence determine the Maclaurin series for \(y\) up to the term in \({{x^2}}\) .

(iii)     Use the result in part (ii) to obtain an approximate value for \(y\) when \(x = 0.3\) .

[8]
b.

(i)     Show that \(\sec x + \tan x\) is an integrating factor for solving this differential equation.

(ii)     Solve the differential equation, giving your answer in the form \(y = f(x)\) .

(iii)     Hence determine which of the two approximate values for y when \(x = 0.3\) , obtained in parts (a) and (b), is closer to the true value.

[11]
c.
Answer/Explanation

Markscheme

Note: The A1 marks above are for correct entries in the \(y\) column.

\(y(0.3) \approx 2.21\)     A1

[5 marks]

a.

(i)     use of product rule on either side     M1

\(\frac{{{{\rm{d}}^{\rm{2}}}y}}{{{\rm{d}}{x^2}}} + \sec x\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + y\sec x\tan x = \sec x – \tan x + x(\sec x\tan x – {\sec ^2}x)\)     A1A1 

(ii)     \(y(0) = 3\)

\(y'(0) = – 3\), \(y”(0) = 4\)     A1A1

the quadratic approximation is

\(y = \left( {y(0) + xy'(0) + |\frac{{{x^2}y”(0)}}{2} = } \right)3 – 3x + 2{x^2}\)     (M1)A1 

(iii)     using this approximation, \(y(0.3) \approx 2.28\)     A1 

[8 marks]

b.

(i)     EITHER

\(\frac{{\rm{d}}}{{{\rm{d}}x}}(\sec x + \tan x) = \sec x\tan x + {\sec ^2}x\)     A1

\(\sec x(\sec x + \tan x) = {\sec ^2}x + \sec x\tan x\)     A1

as these two expressions are the same, this is an integrating factor     R1AG

OR

\((\sec x + \tan x)\left( {\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + y\sec x} \right) = (\sec x + \tan x)x(\sec x – \tan x)\)     M1

Note: RHS does not need to be shown.

\({\rm{LHS}} = \frac{{{\rm{d}}y}}{{{\rm{d}}x}}(\sec x + \tan x) + y(\sec x|\tan x + {\sec ^2}x)\)     A1

\( = \frac{{\rm{d}}}{{{\rm{d}}x}}y(\sec x + \tan x)\)     A1

making LHS an exact derivative

OR

integrating factor \( = {{\rm{e}}^{\int {\sec x{\rm{d}}x} }}\)     M1

since \(\frac{{\rm{d}}}{{{\rm{d}}x}}\ln (\sec x + \tan x) = \frac{{\sec x\tan x + {{\sec }^2}x}}{{\sec x + \tan x}} = \sec x\)     M1A1

integrating factor \( = {{\rm{e}}^{\ln (\sec x + \tan x)}} = \sec x + \tan x\)     AG 

(ii)     \(\frac{{\rm{d}}}{{{\rm{d}}x}}(y\left[ {\sec x + \tan x} \right]) = x({\sec ^2}x – {\tan ^2}x) = x\)     M1A1

\(y(\sec x + \tan x) = \frac{{{x^2}}}{2} + c\)     A1

\(x = 0,y = 3 \Rightarrow c = 3\)     M1A1

\(y = \frac{{{x^2} + 6}}{{2(\sec x + \tan x)}}\)     A1

(iii)     when \(x = 0.3,y = 2.245 \ldots \)     A1

the closer approximation is obtained by using the series in part (b)     R1 

[11 marks]

c.

Examiners report

[N/A]

a.

[N/A]

b.

[N/A]

c.
Scroll to Top