IB DP Further Mathematics -5.6 HL Paper 2

Question

The function \(f\) is defined by \(f(x) = \frac{{{{\rm{e}}^x} + {{\rm{e}}^{ – x}}}}{2}\) .

  (i)     Obtain an expression for \({f^{(n)}}(x)\) , the nth derivative of \(f(x)\) with respect to \(x\).

  (ii)     Hence derive the Maclaurin series for \(f(x)\) up to and including the term in \({x^4}\) .

  (iii)     Use your result to find a rational approximation to \(f\left( {\frac{1}{2}} \right)\) .

  (iv)     Use the Lagrange error term to determine an upper bound to the error in this approximation.

[13]
a.

Use the integral test to determine whether the series \(\sum\limits_{n = 1}^\infty  {\frac{{\ln n}}{{{n^2}}}} \) is convergent or divergent.

[9]
b.
Answer/Explanation

Markscheme

(i)     \({f^{(n)}}(x) = \frac{{{{\rm{e}}^x} + {{( – 1)}^n}{{\rm{e}}^{ – x}}}}{2}\)     (M1)A1

(ii)     Coefficient of \({x^n} = \frac{{{f^{(n)}}(0)}}{{n!}}\)     (M1)

\( = \frac{{1 + {{( – 1)}^n}}}{{2n!}}\)     (A1)

\(f(x) = 1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} +  \ldots \)     A1

(iii)     Putting \(x = \frac{1}{2}\)     M1

\(f(0.5) = 1 + \frac{1}{8} + \frac{1}{{16 \times 24}} = \frac{{433}}{{384}}\)     (M1)A1

(iv)     Lagrange error term \( = \frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}}{x^{n + 1}}\)     M1

\( = \frac{{{f^{(5)}}(c)}}{{120}} \times {\left( {\frac{1}{2}} \right)^5}\)     A1

\({{f^{(5)}}(c)}\) is an increasing function because – any valid reason, e.g. plotted a graph, positive derivative, increasing function minus a decreasing function, so this is maximized when \(x = 0.5\) .     R1

Therefore upper bound \( = \frac{{({{\rm{e}}^{0.5}} – {{\rm{e}}^{ – 0.5}})}}{{2 \times 120}} \times {\left( {\frac{1}{2}} \right)^5}\)     M1

\( = 0.000136\)     A1  

[13 marks]

a.

We consider \(\int_1^\infty  {\frac{{\ln x}}{{{x^2}}}} {\rm{d}}x = \int_1^\infty  {\ln x{\rm{d}}x} \left( { – \frac{1}{2}} \right)\)     M1A1

\( = \left[ { – \frac{{\ln x}}{x}} \right]_1^\infty  + \int_1^\infty  {\frac{{1x}}{{{x^2}}}} {\rm{d}}x\)     A1A1

\( = \left[ { – \frac{{\ln x}}{x}} \right]_1^\infty  – \left[ {\frac{1}{x}} \right]_1^\infty \)     A1

Now \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{1}{x}} \right) = 0\)     R1

\(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{\ln x}}{x}} \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{1}{x}} \right) = 0\)     M1A1

The integral is convergent with value \(1\) and so therefore is the series.      R1

[9 marks]

b.

Question

The function \(f\) is defined by \(f(x) = \ln (1 + \sin x)\) .

When a scientist measures the concentration \(\mu \) of a solution, the measurement obtained may be assumed to be a normally distributed random variable with mean \(\mu \) and standard deviation \(1.6\).

Show that \(f”(x) = \frac{{ – 1}}{{1 + \sin x}}\) .

[4]
A.a.

Determine the Maclaurin series for \(f(x)\) as far as the term in \({x^4}\) .

[6]
A.b.

Deduce the Maclaurin series for \(\ln (1 – \sin x)\) as far as the term in \({x^4}\) .

[2]
A.c.

By combining your two series, show that \(\ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} +  \ldots \) .

[4]
A.d.

Hence, or otherwise, find \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \sec x}}{{x\sqrt x }}\) .

[2]
A.e.

He makes 5 independent measurements of the concentration of a particular solution and correctly calculates the following confidence interval for \(\mu \) .

[\(22.7\) , \(26.1\)]

Determine the confidence level of this interval.

[5]
B.a.

He is now given a different solution and is asked to determine a \(95\%\) confidence interval for its concentration. The confidence interval is required to have a width less than \(2\). Find the minimum number of independent measurements required.

[5]
B.b.
Answer/Explanation

Markscheme

\(f'(x) = \frac{{\cos x}}{{1 + \sin x}}\)     M1A1

\(f”(x) = \frac{{ – \sin x(1 + \sin x) – {{\cos }^2}x}}{{{{(1 + \sin x)}^2}}}\)     M1

\( = \frac{{ – \sin x – 1}}{{{{(1 + \sin x)}^2}}}\)     A1

\( = \frac{{ – 1}}{{1 + \sin x}}\)     AG

[4 marks]

A.a.

\(f”'(x) = \frac{{\cos x}}{{{{(1 + \sin x)}^2}}}\)     A1

\({f^{iv}}(x) = \frac{{ – \sin x{{(1 + \sin x)}^2} – 2(1 + \sin x){{\cos }^2}x}}{{{{(1 + \sin x)}^4}}}\)     A1

\(f(0) = 0\) , \(f'(0) = 1\) , \(f”(0) =  – 1\) , \(f”'(0) = 1\) , \({f^{iv}}(0) = – 2\)     (A2)

Note: Award A1 for 2 errors and A0 for more than 2 errors.

\(\ln (1 + \sin x) = x – \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} – \frac{{{x^4}}}{{12}} +  \ldots \)     M1A1

[6 marks]

A.b.

\(\ln (1 – \sin x) = \ln (1 + \sin ( – x)) =  – x – \frac{{{x^2}}}{2} – \frac{{{x^3}}}{6} – \frac{{{x^4}}}{{12}} +  \ldots \)     M1A1

[2 marks]

A.c.

Adding,     M1

\(\ln (1 – {\sin ^2}x) = \ln {\cos ^2}x\)     A1

\( = – {x^2} – \frac{{{x^4}}}{6} +  \ldots \)     A1

\(\ln \cos x = – \frac{{{x^2}}}{2} – \frac{{{x^4}}}{{12}} +  \ldots \)     A1

\(\ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} +  \ldots \)    AG

[4 marks]

A.d.

\(\frac{{\ln \sec x}}{{x\sqrt x }} = \frac{{\sqrt x }}{2} + \frac{{{x^2}\sqrt x }}{{12}} +  \ldots \)     M1

Limit \( = 0\)     A1

[2 marks]

A.e.

Interval width \( = 26.1 – 22.7 = 3.4\)

So \(3.4 = 2z \times \frac{{1.6}}{{\sqrt 5 }}\)     M1A1

\(z = 2.375 \ldots \)     A1

Probability \( = 0.9912\)     A1

Confidence level \( = 2 \times 0.4912 = 98.2\% \)     A1

[5 marks]

B.a.

\(z\)-value \( = 1.96\)     A1

We require

\(2 \times \frac{{1.96 \times 1.6}}{{\sqrt n }} < 2\)     M1A1

Whence \(n > 9.83\)     A1

So we need \(n = 10\)     A1

Note: Accept \( = \) signs throughout.

[5 marks]

B.b.

Question

A machine fills containers with grass seed. Each container is supposed to weigh \(28\) kg. However the weights vary with a standard deviation of \(0.54\) kg. A random sample of \(24\) bags is taken to check that the mean weight is \(28\) kg.

Assuming the series for \({{\rm{e}}^x}\) , find the first five terms of the Maclaurin series for\[\frac{1}{{\sqrt {2\pi } }}{{\rm{e}}^{\frac{{ – {x^2}}}{2}}} {\rm{  .}}\]

[3]
A.a.

(i)      Use your answer to (a) to find an approximate expression for the cumulative distributive function of \({\rm{N}}(0,1)\) .

(ii)     Hence find an approximate value for \({\rm{P}}( – 0.5 \le Z \le 0.5)\) , where \(Z \sim {\rm{N}}(0,1)\) .

[6]
A.b.

State and justify an appropriate test procedure giving the null and alternate hypotheses.

[5]
B.a.

What is the critical region for the sample mean if the probability of a Type I error is to be \(3.5\%\)?

[7]
B.b.

If the mean weight of the bags is actually \(28\).1 kg, what would be the probability of a Type II error?

[2]
B.c.
Answer/Explanation

Markscheme

\({{\rm{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} +  \ldots \)

\({{\rm{e}}^{\frac{{ – {x^2}}}{2}}} = 1 + \left( { – \frac{{{x^2}}}{2}} \right) + \frac{{{{\left( { – \frac{{{x^2}}}{2}} \right)}^2}}}{{2!}} + \frac{{{{\left( { – \frac{{{x^2}}}{2}} \right)}^3}}}{{3!}} + \frac{{{{\left( { – \frac{{{x^2}}}{2}} \right)}^4}}}{{4!}} +  \ldots \)    M1A1

\(\frac{1}{{\sqrt {2\pi } }}{{\rm{e}}^{\frac{{ – {x^2}}}{2}}} = \frac{1}{{\sqrt {2\pi } }}\left( {1 – \frac{{{x^2}}}{2} + \frac{{{x^4}}}{8} – \frac{{{x^6}}}{{48}} + \frac{{{x^8}}}{{384}}} \right)\)     A1

[3 marks]

A.a.

(i)     \(\frac{1}{{\sqrt {2\pi } }}\int_0^x {1 – \frac{{{t^2}}}{2}}  + \frac{{{t^4}}}{8} – \frac{{{t^6}}}{{48}} + \frac{{{t^8}}}{{384}}{\rm{d}}t\)     M1

\( = \frac{1}{{\sqrt {2\pi } }}\left( {x – \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{40}} – \frac{{{x^7}}}{{336}} + \frac{{{x^9}}}{{3456}}} \right)\)     A1

\({\rm{P}}(Z \le x) = 0.5 + \frac{1}{{\sqrt {2\pi } }}\left( {x – \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{40}} – \frac{{{x^7}}}{{336}} + \frac{{{x^9}}}{{3456}} –  \ldots } \right)\)     R1A1  

(ii)     \({\rm{P}}( – 0.5 \le Z \le 0.5) = \frac{2}{{\sqrt {2\pi } }}\left( {0.5 – \frac{{{{0.5}^3}}}{6} + \frac{{{{0.5}^5}}}{{40}} – \frac{{{{0.5}^7}}}{{336}} + \frac{{{{0.5}^9}}}{{3456}} –  \ldots } \right)\)     M1

\( = 0.38292 = 0.383\)     A1  

[6 marks]

A.b.

this is a two tailed test of the sample mean \(\overline x \)

we use the central limit theorem to justify assuming that     R1

\(\overline X  \sim {\rm{N}}\left( {28,\frac{{{{0.54}^2}}}{{24}}} \right)\)     R1A1

\({{\rm{H}}_0}:\mu  = 28\)     A1

\({{\rm{H}}_1}:\mu  \ne 28\)     A1

[5 marks]

B.a.

since \({\text{P(Type I error)}} = 0.035\) , critical value \(2.108\)     (M1)A1

and (\(\overline x  \le 28 – 2.108\sqrt {\frac{{{{0.54}^2}}}{{24}}} \) or \(\overline x  \ge 28 + 2.108\sqrt {\frac{{{{0.54}^2}}}{{24}}} \) )     (M1)(A1)(A1)

\(\overline x  \le 27.7676\) or \(\overline x  \ge 28.2324\)

so \(\overline x  \le 27.8\) or \(\overline x  \ge 28.2\)     A1A1

[7 marks]

B.b.

if \(\mu  = 28.1\)

\(\overline X  \sim {\rm{N}}\left( {28.1,\frac{{{{0.54}^2}}}{{24}}} \right)\)     R1

\({\text{P(Type II error)}} = {\rm{P}}(27.7676 < \overline x  < 28.2324)\)

\( = 0.884\)     A1

Note: Depending on the degree of accuracy used for the critical region the answer  for part (c) can be anywhere from \(0.8146\) to \(0.879\).

[2 marks]

B.c.

Question

Find the value of \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} – \cot x} \right)\) .

[6]
a.

Find the interval of convergence of the infinite series\[\frac{{(x + 2)}}{{3 \times 1}} + \frac{{{{(x + 2)}^2}}}{{{3^2} \times 2}} + \frac{{{{(x + 2)}^3}}}{{{3^3} \times 3}} +  \ldots \]

[10]
b.

(i)     Find the Maclaurin series for \(\ln (1 + \sin x)\) up to and including the term in \({x^3}\) .

(ii)     Hence find a series for \(\ln (1 – \sin x)\) up to and including the term in \({x^3}\) .

(iii)     Deduce, by considering the difference of the two series, that \(\ln 3 \simeq \frac{\pi }{3}\left( {1 + \frac{{{\pi ^2}}}{{216}}} \right)\) .

[12]
c.
Answer/Explanation

Markscheme

EITHER

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} – \cot x} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\tan x – x}}{{x\tan x}}} \right)\)     M1A1

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{{{\sec }^2}x – 1}}{{x{{\sec }^2}x + \tan x}}} \right)\) , using l’Hopital     A1

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{2{{\sec }^2}x\tan x}}{{2{{\sec }^2}x + 2x{{\sec }^2}x\tan x}}} \right)\)     A1A1

\( = 0\)     A1

OR

\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} – \cot x} \right)\)

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin x – x\cos x}}{{x\sin x}}} \right)\)     M1A1

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{x\sin x}}{{\sin x + x\cos x}}} \right)\) , using l’Hopital     A1

\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sin x + x\cos x}}{{2\cos x – x\sin x}}} \right)\)     A1A1

\( = 0\)     A1

[6 marks]

a.

\({u_n} = \frac{{{{(x + 2)}^n}}}{{{3^n} \times n}}\)     A1

\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\frac{{{{(x + 2)}^{n + 1}}}}{{{3^{n + 1}} \times (n + 1)}}}}{{\frac{{{{(x + n)}^n}}}{{{3^n} \times n}}}} = \frac{{(x + 2)n}}{{3(n + 1)}}\)     M1A1

\(\mathop {\lim }\limits_{n \to \infty } \frac{{(x + 2)n}}{{3(n + 1)}} = \frac{{(x + 2)}}{3}\)     M1A1

\(\left| {\frac{{(x + 2)}}{3}} \right| < 1 \Rightarrow  – 5 < x < 1\)     M1A1

if \(x = 1\) series is \(1 + \frac{1}{2} + \frac{1}{3} +  \ldots \) which diverges     A1

if \(x = – 5\) series is \( – 1 + \frac{1}{2} – \frac{1}{3} +  \ldots  + \frac{{{{( – 1)}^n}}}{n}\) which converges     A1

hence interval is \( – 5 \le x < 1\)     A1

[10 marks]

b.

(i)     \(f(x) = \ln (1 + \sin x)\) , \(f(0) = 0\)     A1

\(f'(x) = \frac{{\cos x}}{{1 + \sin x}}\) , \(f'(0) = 1\)     A1

\(f”(x) = \frac{{ – \sin x(1 + \sin x) – {{\cos }^2}x}}{{{{(1 + \sin x)}^2}}} = \frac{{ – (1 + \sin x)}}{{{{(1 + \sin x)}^2}}} = \frac{{ – 1}}{{1 + \sin x}}\) , \(f”(0) =  – 1\)     A1

\(f”'(x) = \frac{{\cos x}}{{{{(1 + \sin x)}^2}}}\) , \(f”'(0) = 1\)     A1

\(\ln (1 + \sin x) \approx x – \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} –  \ldots \)     A1

(ii)     \( – \sin x = \sin ( – x)\)    M1

so, \(\ln (1 – \sin x) \approx  – x – \frac{{{x^2}}}{2} – \frac{{{x^3}}}{6} –  \ldots \)     A1

(iii)     \(\ln (1 + \sin x) – ln(1 – \sin x)\)

\( = \ln \left( {\frac{{1 + \sin x}}{{1 – \sin x}}} \right) \approx 2x + \frac{{{x^3}}}{3}\)     M1A1

let \(x = \frac{\pi }{6}\) then, \(\ln \left( {\frac{{1 + \frac{1}{2}}}{{1 – \frac{1}{2}}}} \right) = \ln 3 \approx 2\left( {\frac{\pi }{6}} \right) + \frac{{{{\left( {\frac{\pi }{6}} \right)}^3}}}{3}\)     M1A1A1

\( = \frac{\pi }{3}\left( {1 + \frac{{{\pi ^2}}}{{216}}} \right)\)     AG

[12 marks]

c.

Question

Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\tan x = 2{\cos ^4}x\) given that \(y = 1\) when \(x = 0\).

(a)     Solve the differential equation, giving your answer in the form \(y = f(x)\).

(b)     (i)     By differentiating both sides of the differential equation, show that

\[\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y =  – 10\sin x{\cos ^3}x\]

(ii)     Hence find the first four terms of the Maclaurin series for \(y\).

Answer/Explanation

Markscheme

(a)     integrating factor \( = {e^{\int {\tan x{\text{d}}x} }}\)     M1

\( = {{\text{e}}^{\ln \sec x}}\)     A1

\( = \sec x\)     A1

\(\sec x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\sec x\tan x = 2{\cos ^3}x\)     (M1)

integrating,

\(y\sec x = 2\int {{{\cos }^3}x{\text{d}}x} \)     A1

\( = 2\int {\cos x(1 – {{\sin }^2}x){\text{d}}x} \)     A1

\( = 2\left( {\sin x – \frac{{{{\sin }^3}x}}{3}} \right) + C\)     A1

Note: Condone the absence of \(C\).

(substituting \(x = 0,{\text{ }}y = 1\))

\(1 = C\)     M1

the solution is

\(y = 2\cos x\left( {\sin x – \frac{{{{\sin }^3}x}}{3}} \right) + \cos x\)     A1

[9 marks]

 

(b)     (i)     differentiating the equation,

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y{\sec ^2}x + \tan x\frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 8{\cos ^3}x\sin x\)     A1A1

Note: A1 for each side.

substituting for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\),

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y{\sec ^2}x + \tan x\left( {2{{\cos }^4}x – y\tan x} \right) =  – 8{\cos ^3}x\sin x\)     A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y({\sec ^2}x – {\tan ^2}x) =  – 8{\cos ^3}x\sin x – 2\tan x{\cos ^4}x\) (or equivalent)     A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y =  – 10\sin x{\cos ^3}x\)     AG

(ii)     differentiating again,

\(\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} + \frac{{{\text{d}}y}}{{{\text{d}}x}} =  – 10{\cos ^4}x + {\text{term involving }} \sin x\)     A1

it follows that

\(y(0) = 1,{\text{ }}y'(0) = 2\)     A1

\(y”(0) =  – 1,{\text{ }}y”'(0) =  – 12\)     A1

attempting to use \(y = y(0) + xy'(0) + \frac{{{x^2}}}{2}y”(0) + \frac{{{x^3}}}{6}y”'(0) +  \ldots \)     (M1)

\(y = 1 + 2x – \frac{{{x^2}}}{2} – 2{x^3}\)     A1

[9 marks]

Question

Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2x + y – 1\) with boundary condition \(y = 1\) when \(x = 0\).

Using Euler’s method with increments of \(0.2\), find an approximate value for \(y\) when \(x = 1\).

[5]
a.

Explain how Euler’s method could be improved to provide a better approximation.

[1]
b.

Solve the differential equation to find an exact value for \(y\) when \(x = 1\).

[9]
c.

(i)     Find the first three non-zero terms of the Maclaurin series for \(y\).

(ii)     Hence find an approximate value for \(y\) when \(x = 1\).

[5]
d.
Answer/Explanation

Markscheme

    (M1)(A1)(A1)(A1)

Note: Award M1 for equivalent of setting up first row of table, A1 for each of row 2, 3 and 5.

approximate solution \(y = 1.98\)     A1

a.

make the increments smaller or any specific correct instruction – for example change increment from \(0.2\) to \(0.1\)     A1

b.

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} – y = 2x – 1\)

integrating factor is \({{\text{e}}^{\int { – 1{\text{d}}x} }} = {{\text{e}}^{ – x}}\)     (M1)(A1)

\(\frac{{\text{d}}}{{{\text{d}}x}}(y{{\text{e}}^{ – x}}) = {{\text{e}}^{ – x}}(2x – 1)\)     M1

attempt at integration by parts of \(\int {{{\text{e}}^{ – x}}(2x – 1){\text{d}}x} \)     (M1)

\( =  – (2x – 1){{\text{e}}^{ – x}} + \int {2{{\text{e}}^{ – x}}{\text{d}}x} \)     A1

\( =  – (2x – 1){{\text{e}}^{ – x}} – 2{{\text{e}}^{ – x}}( + c)\)     A1

\(y{{\text{e}}^{ – x}} =  – (1 + 2x){{\text{e}}^{ – x}} + c\)

\(y =  – (1 + 2x) + c{{\text{e}}^x}\)

when \(x = 0,{\text{ }}y = 1 \Rightarrow c = 2\)     M1

\(y =  – (1 + 2x) + 2{{\text{e}}^{ – x}}\)     A1

when \(x = 1,{\text{ }}y =  – 3 + 2{\text{e}}\)     A1

c.

(i)     METHOD 1

\(f(0) = 1,{\text{ }}f'(0) = 0\)     A1

\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2 + \frac{{{\text{d}}y}}{{{\text{d}}x}} \Rightarrow {f^2}(0) = 2\)     A1

\(\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = \frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} \Rightarrow {f^3}(0) = 2\)     A1

hence \(y = 1 + {x^2} + \frac{{{x^3}}}{3} +  \ldots \)     A1

Note: Accuracy marks are independent of each other.

METHOD 2

using Maclaurin series for \({{\text{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} +  \ldots \)     M1

\(y =  – 1 – 2x + 2\left( {1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} +  \ldots } \right)\)     M1A1

\(y = 1 + {x^2} + \frac{{{x^3}}}{3} +  \ldots \)     A1

(ii)     when \(x = 1,{\text{ }}y = 1 + 1 + \frac{1}{3} = \frac{7}{3} = 2.33\)     A1

d.

Question

Using a Taylor series, find a quadratic approximation for \(f(x) = \sin x\) centred about \(x = \frac{{3\pi }}{4}\).

[4]
a.

When using this approximation to find angles between \(130^\circ\) and \(140^\circ\), find the maximum value of the Lagrange form of the error term.

[7]
b.

Hence find the largest number of decimal places to which \(\sin x\) can be estimated for angles between \(130^\circ\) and \(140^\circ\).

[1]
c.

Explain briefly why the same maximum value of error term occurs for \(g(x) = \cos x\) centred around \(\frac{\pi }{4}\) when finding approximations for angles between \(40^\circ\) and \(50^\circ\).

[3]
d.
Answer/Explanation

Markscheme

\(f(x) = \sin x,{\text{ }}f'(x) = \cos x,{\text{ }}{f^{(2)}}(x) =  – \sin x\)     M1

\(f\left( {\frac{{3\pi }}{4}} \right) = \frac{1}{{\sqrt 2 }},{\text{ }}f’\left( {\frac{{3\pi }}{4}} \right) =  – \frac{1}{{\sqrt 2 }},{\text{ }}{f^{(2)}}\left( {\frac{{3\pi }}{4}} \right) =  – \frac{1}{{\sqrt 2 }}\)     A1

hence the quadratic Taylor Polynomial is

\(\frac{1}{{\sqrt 2 }} – \frac{1}{{\sqrt 2 }}\left( {x – \frac{{3\pi }}{4}} \right) – \frac{1}{{\sqrt 2 }}\frac{{{{\left( {x – \frac{{3\pi }}{4}} \right)}^2}}}{{2!}}\)     M1A1

\(\left( {\frac{1}{{\sqrt 2 }}\left( {1 – \left( {x – \frac{{3\pi }}{4}} \right) – \frac{1}{2}{{\left( {x – \frac{{3\pi }}{4}} \right)}^2}} \right)} \right)\)

a.

\(f(x) = \sin x,{\text{ }}{f^{(3)}}(x) =  – \cos x\)     (A1)

the Lagrange form of the error term is: \(\left| {{R_n}(x)} \right| \leqslant \frac{{{{\left| {x – a} \right|}^{n + 1}}}}{{(n + 1)!}}\max \left| {{f^{n + 1}}(k)} \right|\)

\(\left| {{R_2}(x)} \right| \leqslant \frac{{{{\left| {x – \frac{{3\pi }}{4}} \right|}^3}}}{{3!}}\max \left| {{f^3}(k)} \right|\)     (M1)

\(\left| {{R_2}(x)} \right| \leqslant \frac{{{{\left| {x – \frac{{3\pi }}{4}} \right|}^3}}}{{3!}}\max \left| { – \cos k} \right|\)     A1

in this case \(\left| { – \cos k} \right| \leqslant \left| { – \cos 140} \right|\)     (A1)

\(\left| {{R_2}(x)} \right| \leqslant \frac{{{{\left| {x – \frac{{3\pi }}{4}} \right|}^3}}}{{3!}}\left| { – \cos 140} \right|\)

choosing \(140^\circ  = \frac{{14\pi }}{{18}}\)     M1

\( \Rightarrow \left| {{R_2}(x)} \right| \leqslant \frac{{{{\left| {\frac{{14\pi }}{{18}} – \frac{{3\pi }}{4}} \right|}^3}}}{{3!}}\left| { – \cos \frac{{14\pi }}{{18}}} \right|\)     A1

therefore the maximum value of the error term is \(8.48 \times {10^{ – 5}}\)     A1

b.

\(\left| {{R_2}(x)} \right| \leqslant 8.48 \times {10^{ – 5}} = 0.0000848\) hence for angles between \(130^\circ\) and \(140^\circ\) the approximation will be accurate to 3 decimal places     A1

c.

\(\left| {{R_2}(x)} \right| \leqslant \frac{{{{\left| {x – \frac{\pi }{4}} \right|}^3}}}{{3!}}\max \left| {\sin k} \right|\)     (M1)

since the max value of \(\left| {{f^3}(k)} \right|\) is \(\sin 50^\circ \) which is the same as \(\left| {\cos 140^\circ } \right|\)     A1R1

then the error is the same     AG

d.

Question

Consider the functions \({f_n}(x) = {\sec ^n}(x),{\text{ }}\left| x \right| < \frac{\pi }{2}\) and \({g_n}(x) = {f_n}(x)\tan x\).

Show that

(i)     \(\frac{{{\text{d}}{f_n}(x)}}{{{\text{d}}x}} = n{g_n}(x)\);

(ii)     \(\frac{{{\text{d}}{g_n}(x)}}{{{\text{d}}x}} = (n + 1){f_{n + 2}}(x) – n{f_n}(x)\).

[5]
a.

(i)     Use these results to show that the Maclaurin series for the function \({f_5}(x)\) up to and including the term in \({x^4}\) is \(1 + \frac{5}{2}{x^2} + \frac{{85}}{{24}}{x^4}\).

(ii)     By considering the general form of its higher derivatives explain briefly why all coefficients in the Maclaurin series for the function \({f_5}(x)\) are either positive or zero.

(iii)     Hence show that \({\sec ^5}(0.1) > 1.02535\).

[14]
b.
Answer/Explanation

Markscheme

(i)     \(\frac{{{\text{d}}{f_n}(x)}}{{{\text{d}}x}} = n{\sec ^{n – 1}}(x)\sec (x)\tan (x)\)     M1A1

\( = n{g_n}(x)\)    AG

(ii)     \(\frac{{{\text{d}}{g_n}(x)}}{{{\text{d}}x}} = \frac{{{\text{d}}{f_n}(x)}}{{{\text{d}}x}}\tan (x) + {f_n}(x){\sec ^2}(x)\)     M1

\(n{g_n}(x)\tan (x) + {f_{n + 2}}(x)\) or equivalent     A1

\(n{f_n}(x){\tan ^2}(x) + {f_{n + 2}}(x)\) or equivalent     A1

\( = (n + 1){f_{n + 2}}(x) – n{f_n}(x)\)    AG

Note:     Award M1A1 for the correct differentiation of a product and A1 for an intermediate result clearly leading to the AG.

[5 marks]

a.

(i)     \({f_5}(0) = 1\)     A1

\(\frac{{{\text{d}}{f_5}}}{{{\text{d}}x}}(0) = 5{g_5}(0) = 0\)    A1

\(\frac{{{{\text{d}}^2}{f_5}}}{{{\text{d}}{x^2}}}(0) = 5\left( {6{f_7}(0) – 5{f_5}(0)} \right) = 5\)    A1

\(\frac{{{{\text{d}}^3}{f_5}}}{{{\text{d}}{x^3}}} = 30\frac{{{\text{d}}{f_7}}}{{{\text{d}}x}} – 25\frac{{{\text{d}}{f_5}}}{{{\text{d}}x}}\)    M1

hence \(\frac{{{{\text{d}}^3}{f_5}}}{{{\text{d}}{x^3}}}(0) = 30 \times 0 – 25 \times 0 = 0\)     A1

\(\frac{{{{\text{d}}^4}{f_5}}}{{{\text{d}}{x^4}}} = 30\frac{{{{\text{d}}^2}{f_7}}}{{{\text{d}}{x^2}}} – 25\frac{{{{\text{d}}^2}{f_5}}}{{{\text{d}}{x^2}}} = 210(8{f_9} – 7{f_7}) – 25\frac{{{{\text{d}}^2}{f_5}}}{{{\text{d}}{x^2}}}\)    M1A1

hence \(\frac{{{{\text{d}}^4}{f_5}}}{{{\text{d}}{x^4}}}(0) = 210 – 125 = 85\)     A1

hence \({f_5}(x) \approx 1 + \frac{5}{2}{x^2} + \frac{{85}}{{24}}{x^4}\)     AG

(ii)     each derivative of \({f_m}(x)\) is a sum of terms of the form \({\text{A}}\,{\sec ^p}(x)\,\,{\tan ^q}(x)\)     A1

where \(A \geqslant 0\)     A1

when \(x = 0\) is substituted the result is the sum of positive and/or zero terms     R1

(iii)     since the full series represents \({f_5}(x)\), the truncated series is a lower bound (or some equivalent statement)     R1

hence \({\sec ^5}(0.1) > 1 + \frac{5}{2}{0.1^2} + \frac{{85}}{{24}}{0.1^4}\)     M1

\( = 1.025354\)    A1

\( > 1.02535\)    AG

[14 marks]

b.

Question

It is given that \(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = \left( {x + 5y} \right)\) and that when \(x = 0,\,\,y = 2\).

Use Euler’s method with step length 0.1 to find an approximate value of \(y\) when \(x = 0.4\).

[5]
a.

Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 – {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\).

[3]
b.i.

Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  – 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} – 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\).

[4]
b.ii.

Find the Maclaurin expansion for \(y\) up to and including the term in \({{x^3}}\).

[5]
b.iii.
Answer/Explanation

Markscheme

Euler’s method with step length \(h = 0.1\) to find \(y\) when \(x = 0.4\)

Note: Accept 3 significant figures in the table.

first line of table       (M1)(A1)

line 2        (A1)

line 3        (A1)

hence \(y\) = 3.65       A1

Note: Accept any answer that rounds to 3.65.

[5 marks]

a.

\(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + 5y\)

\(\left( {5 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 + 5\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     M1A1A1

Note: Award M1 for a valid attempt to differentiate, A1 for LHS, A1 for RHS.

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 + 5\frac{{{\text{d}}y}}{{{\text{d}}x}} – 5\frac{{{\text{d}}y}}{{{\text{d}}x}} – {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 – {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)      AG

[3 marks]

b.i.

\(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}1 – {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\)

\(\left( {5 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + \left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  – 2\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)     M1A1A1A1

\(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  – 2\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right) – 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} – \left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)

\(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  – 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} – 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\)     AG

[4 marks]

b.ii.

when \(x = 0\,\,\,y = 2\)

when \(x = 0\,\,\frac{{{\text{d}}y}}{{{\text{d}}x}} = 5\)      A1

when \(x = 0\,\,\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} =  – 12\)      A1

when \(x = 0\,\,\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = 120\)      A1

Note: Allow follow through from incorrect values of derivatives.

\(y = 2 + 5x – 6{x^2} + 20{x^3}\)      M1A1

[5 marks]

b.iii.

Question

Consider the differential equation\[\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\sec x = x(\sec x – \tan x),{\text{ where }}y = 3{\text{ when }}x = 0.\]

Use Euler’s method with a step length of \(0.1\) to find an approximate value for \(y\) when \(x = 0.3\) .

[5]
a.

(i)     By differentiating the above differential equation, obtain an expression involving \(\frac{{{{\rm{d}}^{\rm{2}}}y}}{{{\rm{d}}{x^2}}}\) .

(ii)     Hence determine the Maclaurin series for \(y\) up to the term in \({{x^2}}\) .

(iii)     Use the result in part (ii) to obtain an approximate value for \(y\) when \(x = 0.3\) .

[8]
b.

(i)     Show that \(\sec x + \tan x\) is an integrating factor for solving this differential equation.

(ii)     Solve the differential equation, giving your answer in the form \(y = f(x)\) .

(iii)     Hence determine which of the two approximate values for y when \(x = 0.3\) , obtained in parts (a) and (b), is closer to the true value.

[11]
c.
Answer/Explanation

Markscheme

Note: The A1 marks above are for correct entries in the \(y\) column.

\(y(0.3) \approx 2.21\)     A1

[5 marks]

a.

(i)     use of product rule on either side     M1

\(\frac{{{{\rm{d}}^{\rm{2}}}y}}{{{\rm{d}}{x^2}}} + \sec x\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + y\sec x\tan x = \sec x – \tan x + x(\sec x\tan x – {\sec ^2}x)\)     A1A1

(ii)     \(y(0) = 3\)

\(y'(0) = – 3\), \(y”(0) = 4\)     A1A1

the quadratic approximation is

\(y = \left( {y(0) + xy'(0) + |\frac{{{x^2}y”(0)}}{2} = } \right)3 – 3x + 2{x^2}\)     (M1)A1 

(iii)     using this approximation, \(y(0.3) \approx 2.28\)     A1

[8 marks]

b.

(i)     EITHER

\(\frac{{\rm{d}}}{{{\rm{d}}x}}(\sec x + \tan x) = \sec x\tan x + {\sec ^2}x\)     A1

\(\sec x(\sec x + \tan x) = {\sec ^2}x + \sec x\tan x\)     A1

as these two expressions are the same, this is an integrating factor     R1AG

OR

\((\sec x + \tan x)\left( {\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + y\sec x} \right) = (\sec x + \tan x)x(\sec x – \tan x)\)     M1

Note: RHS does not need to be shown.

\({\rm{LHS}} = \frac{{{\rm{d}}y}}{{{\rm{d}}x}}(\sec x + \tan x) + y(\sec x|\tan x + {\sec ^2}x)\)     A1

\( = \frac{{\rm{d}}}{{{\rm{d}}x}}y(\sec x + \tan x)\)     A1

making LHS an exact derivative

OR

integrating factor \( = {{\rm{e}}^{\int {\sec x{\rm{d}}x} }}\)     M1

since \(\frac{{\rm{d}}}{{{\rm{d}}x}}\ln (\sec x + \tan x) = \frac{{\sec x\tan x + {{\sec }^2}x}}{{\sec x + \tan x}} = \sec x\)     M1A1

integrating factor \( = {{\rm{e}}^{\ln (\sec x + \tan x)}} = \sec x + \tan x\)     AG

(ii)     \(\frac{{\rm{d}}}{{{\rm{d}}x}}(y\left[ {\sec x + \tan x} \right]) = x({\sec ^2}x – {\tan ^2}x) = x\)     M1A1

\(y(\sec x + \tan x) = \frac{{{x^2}}}{2} + c\)     A1

\(x = 0,y = 3 \Rightarrow c = 3\)     M1A1

\(y = \frac{{{x^2} + 6}}{{2(\sec x + \tan x)}}\)     A1

(iii)     when \(x = 0.3,y = 2.245 \ldots \)     A1

the closer approximation is obtained by using the series in part (b)     R1

[11 marks]

c.
Scroll to Top