IB DP Further Mathematics 6.11 HL Paper 2

Question

(a)     Consider the recurrence relation \(a{u_{n + 1}} + b{u_n} + c{u_{n – 1}} = 0\).

Show that \({u_n} = A{\lambda ^n} + B{\mu ^n}\) satisfies this relation where \(A\), \(B\) are arbitrary constants and \(\lambda \), \(\mu \) are the roots of the equation \(a{x^2} + bx + c = 0\).

(b)     

A particle \(P\) executes a random walk on the line above such that when it is at point \(n\left( {1 \leqslant n \leqslant 9,{\text{ }}n \in {\mathbb{Z}^ + }} \right)\) it has a probability \(0.4\) of moving to \(n + 1\) and a probability \(0.6\) of moving to \(n – 1\). The walk terminates as soon as \(P\) reaches either \(0\) or \(10\). Let \({p_n}\) denote the probability that the walk terminates at \(0\) starting from \(n\).

(i)     Show that \(2{p_{n + 1}} – 5{p_n} + 3{p_{n – 1}} = 0\).

(ii)     By solving this recurrence relation subject to the boundary conditions \({p_0} = 1\), \({p_{10}} = 0\) show that \({p_n} = \frac{{{{1.5}^{10}} – {{1.5}^n}}}{{{{1.5}^{10}} – 1}}\).

Answer/Explanation

Markscheme

(a)     consider

\(a{u_{n + 1}} + b{u_n} + c{u_{n – 1}} = aA{\lambda ^{n + 1}} + aB{\mu ^{n + 1}} + bA{\lambda ^n} + bB{\mu ^n} + cA{\lambda ^{n – 1}} + cB{\mu ^{n – 1}}\)     M1A1

\( = A{\lambda ^{n – 1}}\left( {a{\lambda ^2} + b\lambda  + c} \right) + B{\mu ^{n – 1}}\left( {a{\mu ^2} + b\mu  + c} \right)\)     A1

\(= 0 \)

[3 marks]

 

(b)     (i)     to terminate at \(0\) starting from \(n\), the particle must either move to \(n + 1\) and terminate at \(0\) starting from there or move to \(n – 1\) and terminate at \(0\) starting from there

therefore,

\({p_n} = 0.4{p_{n + 1}} + 0.6{p_{n – 1}}\)     M1A2

leading to \(2{p_{n + 1}} – 5{p_n} + 3{p_{n – 1}} = 0\)     AG

(ii)     solving the auxiliary equation \(2{x^2} – 5x + 3 = 0\)     M1

\(x = 1,{\text{ 1.5}}\)     A1

the general solution is

\({p_n} = A + B{(1.5)^n}\)     A1

substituting the boundary conditions,

\(A + B = 1\)

\(A + B{(1.5)^{10}} = 0\)     M1A1

solving,

\(A = \frac{{{{1.5}^{10}}}}{{{{1.5}^{10}} – 1}};{\text{ }}B =  – \frac{1}{{{{1.5}^{10}} – 1}}\)     A1A1

giving

\({p_n} = \frac{{{{1.5}^{10}} – {{1.5}^n}}}{{{{1.5}^{10}} – 1}}\)     AG

[10 marks]

Question

In 1985 , the deer population in a national park was \(330\). A year later it had increased to \(420\). To model these data the year 1985 was designated as year zero. The increase in deer population from year \(n – 1\) to year \(n\) is three times the increase from year \(n – 2\) to year \(n – 1\). The deer population in year \(n\) is denoted by \({x_n}\).

Show that for \(n \geqslant 2,{\text{ }}{x_n} = 4{x_{n – 1}} – 3{x_{n – 2}}\).

[3]
a.

Solve the recurrence relation.

[6]
b.

Show using proof by strong induction that the solution is correct.

[9]
c.
Answer/Explanation

Markscheme

\({x_n} – {x_{n – 1}} = 3({x_{n – 1}} – {x_{n – 2}})\)     M1A2

\({x_n} = 4{x_{n – 1}} – 3{x_{n – 2}}\)     AG

a.

we need to solve the quadratic equation \({t^2} – 4t + 3 = 0\)     (M1)

\(t = 3,{\text{ }}1\)     A1

\({x_n} = a \times {1^n} + b \times {3^n}\)

\({x_n} = a + b \times {3^n}\)     A1

\(330 = a + b\) and  \(420 = a + 3b\)     M1

\(a = 285\) and \(b = 45\)     A1

\({x_n} = 285 + 45 \times {3^n}\)     A1

b.

\({x_n} = 4{x_{n – 1}} – 3{x_{n – 2}}\)

\({x_n} = 285 + 45 \times {3^n}\)

let \(n = 0 \Rightarrow {x_0} = 330\)     A1

let \(n = 1 \Rightarrow {x_1} = 420\)     A1

hence true for \(n = 0,{\text{ }}n = 1\)

assume true for \(n = k,{\text{ }}{x_k} = 285 + 45 \times {3^k}\)     M1

and assume true for \(n = k – 1,{\text{ }}{x_{k – 1}} = 285 + 45 \times {3^{k – 1}}\)     M1

consider \(n = k + 1\)

\({x_{k + 1}} = 4{x_k} – 3{x_{k – 1}}\)     M1

\({x_{k + 1}} = 4(285 + 45 \times {3^k}) – 3(285 + 45 \times {3^{k – 1}})\)     A1

\({x_{k + 1}} = 4(285) – 3(285) + 4(45 \times {3^k}) – (45 \times {3^k})\)     (A1)

\({x_{k + 1}} = 285 + 3(45 \times {3^k})\)

\({x_{k + 1}} = 285 + 45 \times {3^{k + 1}}\)     A1

hence if solution is true for \(k\) and \(k – 1\) it is true for. However solution is true for \(k = 0\), \(k = 1\). Hence true for all \(k\). Hence proved by the principle of strong induction     R1

Note: Do not award final reasoning mark unless candidate has been awarded at least 4 other marks in this part.

c.

Question

The sequence \(\{ {u_n}:n \in {\mathbb{Z}^ + }\} \) satisfies the recurrence relation \(2{u_{n + 2}} – 3{u_{n + 1}} + {u_n} = 0\), where \({u_1} = 1,{\text{ }}{u_2} = 2\).

The sequence \(\{ {w_n}:n \in \mathbb{N}\} \) satisfies the recurrence relation \({w_{n + 2}} – 2{w_{n + 1}} + 4{w_n} = 0\), where \({w_0} = 0,{\text{ }}{w_1} = 2\).

(i)     Find an expression for \({u_n}\) in terms of \(n\).

(ii)     Show that the sequence converges, stating the limiting value.

[9]
a.

The sequence \(\{ {v_n}:n \in {\mathbb{Z}^ + }\} \) satisfies the recurrence relation \(2{v_{n + 2}} – 3{v_{n + 1}} + {v_n} = 1\), where \({v_1} = 1,{\text{ }}{v_2} = 2\).

Without solving the recurrence relation prove that the sequence diverges.

[3]
b.

(i)     Find an expression for \({w_n}\) in terms of \(n\).

(ii)     Show that \({w_{3n}} = 0\) for all \(n \in \mathbb{N}\).

[7]
c.
Answer/Explanation

Markscheme

(i)     the auxiliary equation is \(2{r^2} – 3r + 1 = 0\)     (M1)

with roots \(r = 1,{\text{ }}\frac{1}{2}\)     A1

the general solution of the difference equation is     (M1)

\({u_n} = A + B{\left( {\frac{1}{2}} \right)^n}\)    A1

imposing the initial conditions     M1

\(A + \frac{B}{2} = 1,{\text{ }}A + \frac{B}{4} = 2\)    A1

obtain \({u_n} = 3 – 4{\left( {\frac{1}{2}} \right)^n}\)     A1

(ii)     as \(n \to \infty ,{\text{ }}{\left( {\frac{1}{2}} \right)^n} \to 0\)     R1

\({u_n} \to 3\)    A1

hence the sequence is convergent     AG

[9 marks]

a.

assume \({v_n} \to L\)     M1

taking the limit of both sides of the recurrence relation     M1

\(2L – 3L + L{\text{ }}( = 0) = 1\)     A1

the contradiction shows that the sequence diverges     AG

[3 marks]

b.

(i)     the auxiliary equation \({r^2} – 2r + 4 = 0\)     A1

has roots \(1 \pm {\text{i}}\sqrt 3 \)     A1

METHOD 1

these can be re-expressed as \(2\left( {\cos \left( {\frac{\pi }{3}} \right) \pm {\text{i}}\sin \left( {\frac{\pi }{3}} \right)} \right)\)     M1

the general solution is

\({w_n} = {2^n}\left( {A\cos \left( {\frac{{n\pi }}{3}} \right) + B\sin \left( {\frac{{n\pi }}{3}} \right)} \right)\)    A1

imposing the initial conditions

\(A = 0,{\text{ }}2B\frac{{\sqrt 3 }}{2} = 2\)    A1

obtain \({w_n} = \frac{{{2^{n + 1}}}}{{\sqrt 3 }}\sin \left( {\frac{{n\pi }}{3}} \right)\)     A1

METHOD 2

the general solution is

\({w_n} = A{\left( {1 + {\text{i}}\sqrt 3 } \right)^n} + B{\left( {1 – {\text{i}}\sqrt 3 } \right)^n}\)     A1

imposing the initial conditions

\(A + B = 0,{\text{ }}A + B + {\text{i}}\sqrt 3 (A – B) = 2\)    M1A1

obtain \({w_n} = \frac{1}{{{\text{i}}\sqrt 3 }}{\left( {1 + {\text{i}}\sqrt 3 } \right)^n} – \frac{1}{{{\text{i}}\sqrt 3 }}{\left( {1 – {\text{i}}\sqrt 3 } \right)^n}\)     A1

(ii)     METHOD 1

\({w_{3n}} = \frac{{{2^{3n + 1}}}}{{\sqrt 3 }}\sin (n\pi )\)    R1

\( = 0\)    AG

METHOD 2

\({w_{3n}} = \frac{1}{{{\text{i}}\sqrt 3 }}{\left( {1 + {\text{i}}\sqrt 3 } \right)^{3n}} – \frac{1}{{{\text{i}}\sqrt 3 }}{\left( {1 – {\text{i}}\sqrt 3 } \right)^{3n}}\)

\( = \frac{1}{{{\text{i}}\sqrt 3 }}{( – 8)^n} – \frac{1}{{{\text{i}}\sqrt 3 }}{( – 8)^n}\)    R1

\( = 0\)    AG

[7 marks]

c.

Question

The sequence \(\{ {u_n}\} \) satisfies the second-degree recurrence relation

\[{u_{n + 2}} = {u_{n + 1}} + 6{u_n},{\text{ }}n \in {\mathbb{Z}^ + }.\]

Another sequence \(\{ {v_n}\} \) is such that

\[{v_n} = {u_{2n}},{\text{ }}n \in {\mathbb{Z}^ + }.\]

Write down the auxiliary equation.

[1]
a.i.

Given that \({u_1} = 12,{\text{ }}{u_2} = 6\), show that

\[{u_n} = 2 \times {3^n} – 3 \times {( – 2)^n}.\]

[5]
a.ii.

Determine the value of \(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n} + {u_{n – 1}}}}{{{u_n} – {u_{n – 1}}}}\).

[4]
a.iii.

Determine the second-degree recurrence relation satisfied by \(\{ {v_n}\} \).

[4]
b.
Answer/Explanation

Markscheme

the auxiliary equation is \({m^2} – m – 6 = 0\) or equivalent     A1

[??? marks]

a.i.

attempt to solve quadratic     (M1)

the roots are \(3,{\text{ }} – 2\)     A1

the general solution is

\({u_n} = A \times {3^n} + B \times {( – 2)^n}\)     A1

initial conditions give 

\(3A – 2B = 12\)

\(9A + 4B = 6\)     M1

the solution is \(A = 2,{\text{ }}B =  – 3\)     A1

\({u_n} = 2 \times {3^n} – 3 \times {( – 2)^n}\)     AG

[??? marks]

a.ii.

\({u_n} + {u_{n – 1}} = 2 \times {3^n} – 3 \times {( – 2)^n} + 2 \times {3^{n – 1}} – 3 \times {( – 2)^{n – 1}}\)     M1

\( = 8 \times {3^{n – 1}} + {\text{multiple of }}{2^{n – 1}}\)     A1

\({u_n} – {u_{n – 1}} = 2 \times {3^n} – 3 \times {( – 2)^n} – 2 \times {3^{n – 1}} + 3 \times {( – 2)^{n – 1}}\)

\( = 4 \times {3^{n – 1}} + {\text{multiple of }}{2^{n – 1}}\)     A1

any evidence of noting that the \({3^{n – 1}}\) terms dominate     R1

\(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n} + {u_{n – 1}}}}{{{u_n} – {u_{n – 1}}}} = 2\)     A1

[??? marks]

a.iii.

\({v_n} = 2 \times {3^{2n}} – 3 \times {( – 2)^{2n}}\)     M1

\( = 2 \times {9^n} – 3 \times {4^n}\)     A1

the auxiliary equation is

\({m^2} – 13m + 36 = 0\)     A1

the recurrence relation is

\({v_{n + 2}} = 13{v_{n + 1}} – 36{v_n}\)     A1

[4 marks]

b.
Scroll to Top