IB DP Further Mathematics 6.6 HL Paper 2

Question

The graph \(G\) has the following cost adjacency matrix.

Draw \(G\) in planar form.

[2]
A.a.

Given that \(ax \equiv b(\bmod p)\) where \(a,b,p,x \in {\mathbb{Z}^ + }\) , \(p\) is prime and \(a\) is not a multiple of \(p\), use Fermat’s little theorem to show that

\(x \equiv {a^{p – 2}}b(\bmod p)\) .

[3]
B.a.

Hence solve the simultaneous linear congruences\[3x \equiv 4(\bmod 5)\]\[5x \equiv 6(\bmod 7)\]giving your answer in the form \(x \equiv c(\bmod d)\) .

[8]
B.b.
Answer/Explanation

Markscheme

                                                                                    A2

[2 marks]

Note: The weights are not required for this A2.

A.a.

Multiply through by \({a^{p – 2}}\) .

\({a^{p – 1}}x \equiv {a^{p – 2}}b(\bmod p)\)     M1A1

Since, by Fermat’s little theorem, \({a^{p – 1}} \equiv 1(\bmod p)\) ,     R1

\(x \equiv {a^{p – 2}}b(\bmod p)\)     AG

[3 marks]

B.a.

Using the result from (a),

\(x \equiv {3^3} \times 4(\bmod 5) \equiv 3(\bmod 5)\)     M1A1

\( = 3\), \(8\), \(13\), \(18\), \(23\),…     (A1)

and \(x \equiv {5^5} \times 6(\bmod 7) \equiv 4(\bmod 7)\)     M1A1

\( = 4\), \(11\), \(18\), \(25\),…     (A1)

The general solution is

\(x = 18 + 35n\)     M1

i.e. \(x \equiv 18(\bmod 35)\)     A1

[8 marks]

B.b.

Question

Given the linear congruence \(ax \equiv b({\rm{mod}}p)\) , where \(a\) , \(b \in \mathbb{Z} \) , \(p\) is a prime and \({\rm{gcd}}(a,p) = 1\) , show that \(x \equiv {a^{p – 2}}b({\rm{mod}}p)\) .

[4]
a.

(i)     Solve \(17x \equiv 14(\bmod 21)\) .

(ii)     Use the solution found in part (i) to find the general solution to the Diophantine equation \(17x + 21y = 14\) .

[10]
b.
Answer/Explanation
Answer/Explanation

Markscheme

\(ax \equiv b({\rm{mod}}p)\)

\( \Rightarrow {a^{p – 2}} \times ax \equiv {a^{p – 2}} \times b({\rm{mod}}p)\)     M1A1

\( \Rightarrow {a^{p – 1}}x \equiv {a^{p – 2}} \times b({\rm{mod}}p)\)     A1

but \({a^{p – 1}} \equiv 1({\rm{mod}}p)\) by Fermat’s little theorem     R1

\( \Rightarrow x \equiv {a^{p – 2}} \times b({\rm{mod}}p)\)     AG

Note: Award M1 for some correct method and A1 for correct statement.

[4 marks]

a.

(i)     \(17x \equiv 14(\bmod 21)\)

\( \Rightarrow x \equiv {17^{19}} \times 14(\bmod 21)\)     M1A1

\({17^6} \equiv 1(\bmod21)\)     A1

\( \Rightarrow x \equiv {(1)^3} \times 17 \times 14(\bmod 21)\)     A1

\( \Rightarrow x \equiv 7(\bmod21)\)     A1

(ii)     \(x \equiv 7(mod21)\)

\( \Rightarrow x = 7 + 21t\) , \(t \in \mathbb{Z}\)     M1A1

\( \Rightarrow 17(7 + 21t) + 21y = 14\)     A1

\( \Rightarrow 119 + 357t + 21y = 14\)

\( \Rightarrow 21y = – 105 – 357t\)     A1

\( \Rightarrow y = – 5 – 17t\)     A1 

[10 marks]

b.
Scroll to Top