Home / IB DP Math MAA SL : IB Style Mock Exams – Set 1 Paper 1

IB DP Math MAA SL : IB Style Mock Exams – Set 1 Paper 1

Mock Exams AA SL Set 1 Paper 1-Dev

Question: 1

Two events A and B are such that P(A) = 0.5 and P(A∩B) = 0.1.

(a) Find P(A∩B’).

(b) Given that P(A’ ∩ B’) = 0.2, find:

(i)  P(A ∪ B);

(ii) P(B);

(iii) P(A|B’).

Answer/Explanation

Ans: 

(a) If we shade in the region A ∩ B’ on the Venn diagram below, we have 

Hence, using the Venn  diagram above, we deduce

P(A∩B’) = P(A) – P(A∩B)

                = 0.5 – 0.1

                = 0.4

(b) (i) We have 

                   (A ∪ B)’ = A’ ∩ B’

Hence, using the complementary events formula, we get 

               P(A’ ∩ B’)  = 1 – P(A∪B)

                        0.2     = 1 – P(A∪B)

              P(A∪B)       = 1 – 0.2

              P(A∪B)       = 0.8

(ii) Using the combined events formula, we obtain

          P(A∪B)   = P(A) + P(B) – P(A∩B)

                   0.8  = 0.5 + P(B) – 0.1

          0.8 – 0.4 = P(B)

                  P(B) = 0.4

(iii) Using the complementary events formula, we know P(B’)  = 1 – P(B)

                          P(B’) = 0.6

Hence, using the conditional probability formula, we find

\(P(A|B’)=\frac{P(A\cap B’)}{P(B’)}\)

\(= \frac{0.4}{0.6}\)

\(= \frac{2}{3}\)

Question 2:

Two functions, f and g, are defined in the following table.

x-4025
f(x)920-2
g(x)5-13-8

(a) Write down the value of f(2).

(b) Find the value of (g ο f) (2).

(c) Find the value of g-1 (5) .

Answer/Explanation

Ans: 

(a) f(2)  = 0

(b) We have

(g ο f) (2) = g(f(2))

                   = g(0) 

                   = -1

(c) We have

(g ο g-1) (5) = 5

g(g-1(5)) = 5

g-1 (5) = -4                                [since g(-4) = 5]

Question 3:

The following diagram shows the curve y = a cos (k(x -d))  + c where a, k, d and c are all positive constants. The curve has a minimum point at (1.5, 2) and a maximum point at (3.5, 7).

(a) Write down the value of a and the value of c.

(b) Find the value of k.

(c) Find the smallest possible value of d, given d > 0.

Answer/Explanation

Ans: 

(a) We have 

\(a = \frac{y max – y min}{2}\)

\(= \frac{7 – 2}{2}\)

= 2.5

and

\(c = \frac{y max + y min}{2}\)

\(= \frac{7 + 2}{2}\)

= 4.5

(b) The period of the curve is 

period  = 2 (3.5 – 1.5)

              = 4

Hence we get

\(k = \frac{2\pi }{period}\)

\(=\frac{2\pi }{4}\)

\(=\frac{\pi }{2}\)

Question 4:

(a) Find \(\int 6x^{2}e^{x^{3}+8}dx.\)

(b) Find f(x) given that \(f'(x) = 6x^{2}e^{x^{3}+8}\) and f(-2) = 5.

Answer/Explanation

Ans: 

(a) Using integration by substitution with u = x3 + 8 and \(\frac{du}{3x^{2}}= dx\), we get

\(\int 6x^{2}e^{x^{3}+8}dx = \int 6x^{2}e^{u}\frac{du}{3x^{2}}\)

\(=\int 2e^{u}du\)

= 2eu + C

\(= 2e^{x^{3}+8}+C\)

(b) We know that f(x) = ∫ f'(x) dx and from part (a) \(f(x)= 2e^{x^{3}+8}+C\). Let’s determine C. We have

\(5= 2e^{(-2)^{3}+8}+C\)

 5 = 2 + C

C = 3

We found  \(f(x)= 2e^{x^{3}+8}+3\)

 

Question 5:

Solve the equation cos 2x – sin2x + 3 cos x, for 0 ≤ x ≤ 2π.

Answer/Explanation

Ans:

Using the Pythagorean identity and double angle identity for cosine, we get

cos 2x – sin2x  = cos 2 x +  3 cos x

cos 2x – 3 cos x  = cos 2 x +  3 sin2 x

cos 2x – 3 cos x = 1

(2 cos2x – 1) – 3 cos x = 1

2 cos2 x – 3 cos x – 2 = 0

(2 cos x + 1) (cos x – 2) = 0

2 cos x + 1 = 0                                     [ since  cos x – 2 ≠ 0]

cos x = \(-\frac{1}{2}\)

\(x = \frac{2\pi }{3},\frac{4\pi }{3}\)

Question 6:

Consider f(x) = logk (8x – 2x2), for 0 < x < 4, where k > 0.

The equation f(x) = 3 has exactly one solution. Find the value of k.

Answer/Explanation

Ans: If we rewrite the equation f(x) = 3 in the form ax2 + bx + c = 0, we have 

                              logk (8x – 2x2) = 3

                                 8x – 2x2 = k3

                                            0 = 2x2 – 8x + k3

Hence the quadratic function q(x) = 2x2 – 8x + k3 has two equal roots.

Therefore we get 

                                                  [ discriminant of q] = 0

                                            (-8)2 – 4(2) (k3) = 0                                [Δ = b2 – 4 ac]

                                             64 – 8k3 = 0

                                               8 – k3  = 0

                                                    k3  = 8

                                                    k = 2

Question 7 :

Let f(x) = 3x2 + 12x + 9, for x ∈ R.

(a) For the graph of f, find:

(i) the y-intercept;

(ii) the x-intercepts.

The function f can be written in the form f(x) = a(x – h)2 + k.

(b) Find the value of a, h and k.

(c) For the graph of f, write down:

(i) the coordinates of the vertex;

(ii) the equation of the axis of symmetry.

The graph of a function  g is obtained from the graph of f by a reflectionin the x-axis, followed by a translation by the vector \(\binom{0}{4}.\)

(d) Find g(x), giving your answer in the form g(x) = px2 + qx + r.

Answer/Explanation

Ans: (a) (i) Evaluating f(x) = 3x2 + 12x + 9 for x = 0, we have

f(0) = 3(0)2 + 12(0) + 9

 = 9

Hence the y-intercept is A(0, 9)

(ii) Solving the equation f(x) = 0 for x, we have

3x2 + 12x + 9 = 0

x2 + 4x + 3 = 0

(x + 3) (x + 1) = 0

x = -3, -1

Hence the x-intercepts are B(-3, 0) and C(-1, 0)

(b) Using the method of completing the square, we have

f(x) = 3x2 + 12x + 9

        = 3 [x2 + 4x] +9

        = 3(x+ 2)2 – 3

Hence we find a = 3, h = -2 and k = -3

(c) (i) (-2, -3)

      (ii) x = -2

(d) We have

g(x) = -f(x) + 4

= -(3x2 + 12x + 9) + 4

= -3x2 – 12x – 5

Question 8:

The first two terms of an infinite geometric sequence, in order, are 

3 log3x, 2 log3 x, where x > 0.

(a) Find the common ratio, r.

(b) Show that the sum of the infinite sequence is 9 log3 x.

The first three terms of an arithmetic sequence, in order, are

\(log_{3}x, log_{3}\frac{x}{3}, log_{3}\frac{x}{9}, \) where x > 0.

(c) Find the common difference d, giving your answer as an integer. Let S6 be the sum of the first 6 terms of the arithmetic sequence.

(d) Show that S6 = 6 log3 x – 15.

(d) Given that S6 is equal to one third of the sum of the infinite geometric sequence, find x, giving your answer in the form ap where a, p ∈ Z.

Answer/Explanation

Ans: 

(a) The common ratio is 

\(r = \frac{u_{2}}{u_{1}}\)

\( = \frac{2 log_{3}x}{3 log_{3}x}\)

\(= \frac{2}{3}\)

(b) Using the sum of an infinite geometric formula \(S_{\infty }=\frac{u_{1}}{1 – r},\) we get

\(S_{\infty }=\frac{3 log_{3}x}{1 – 2/3}\)

\(=\frac{3 log_{3}x}{1/3}\)

= 9 log3 x

(c) Using the properties of logarithms, we find 

d = u2 – u1

\(= log_{3}\frac{x}{3}-log_{3}x\)

= (log3 x – log3 3) – log3 x

= -1

(d) Using the sum of n terms formula \(S_{n} = \frac{n}{2}(2u_{1}+(n-1)d)\) with n = 6, we get

\(S_{6} = \frac{6}{2}(2u_{1}+(6-1)d)\) 

\( = \frac{6}{2}(2{log_{3}x}+(6-1)(-1))\)

\( = \frac{6}{2}(2{log_{3}x}-5)\)

= 6 log3 x – 15

Question 9:

Consider a function f. The line L1 with equation y = 2x – 1 is a tangent to the graph of f when x = 3.

(a) (i) Write down f'(3).

      (ii) Find f(3).

Let g(x) = f(x2 – 1) and P be the point on the graph of g where x = 2.

(b) Show that the graph of g has a gradient of 8 at P.

Let L2 be the tangent to the graph f g at P. The line L1 intersects L2 at the point Q.

(c) Find the y-coordinates of Q.

Answer/Explanation

Ans: 

(a) (i) The slope of the tangent line L1 at x = 3 is m = 2, hence

f ‘ (3) = 2

(ii) Since L1 and f have a common point at x = 3, we get

f(3) = 2(3) – 1

= 5

(b) We have

g ‘ (x) = f ‘(x2 – 1) . 2x

g ‘(2) = f ‘(22 – 1 ) . 2(2)

= f ‘ (3) . 4

= 2 (4)

= 8

Scroll to Top