IB DP Maths Topic 1.1 Sigma notation SL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The first three terms of a geometric sequence are \(\ln {x^{16}}\), \(\ln {x^8}\), \(\ln {x^4}\), for \(x > 0\).

Find the common ratio.

[3]
a.

Solve \(\sum\limits_{k = 1}^\infty  {{2^{5 – k}}\ln x = 64} \).

[5]
b.
Answer/Explanation

Markscheme

correct use \(\log {x^n} = n\log x\)     A1

eg\(\,\,\,\,\,\)\(16\ln x\)

valid approach to find \(r\)     (M1)

eg\(\,\,\,\,\,\)\(\frac{{{u_{n + 1}}}}{{{u_n}}},{\text{ }}\frac{{\ln {x^8}}}{{\ln {x^{16}}}},{\text{ }}\frac{{4\ln x}}{{8\ln x}},{\text{ }}\ln {x^4} = \ln {x^{16}} \times {r^2}\)

\(r = \frac{1}{2}\)     A1     N2

[3 marks]

a.

recognizing a sum (finite or infinite)     (M1)

eg\(\,\,\,\,\,\)\({2^4}\ln x + {2^3}\ln x,{\text{ }}\frac{a}{{1 – r}},{\text{ }}{S_\infty },{\text{ }}16\ln x +  \ldots \)

valid approach (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)recognizing GP is the same as part (a), using their \(r\) value from part (a), \(r = \frac{1}{2}\)

correct substitution into infinite sum (only if \(\left| r \right|\) is a constant and less than 1)     A1

eg\(\,\,\,\,\,\)\(\frac{{{2^4}\ln x}}{{1 – \frac{1}{2}}},{\text{ }}\frac{{\ln {x^{16}}}}{{\frac{1}{2}}},{\text{ }}32\ln x\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(\ln x = 2\)

\(x = {{\text{e}}^2}\)     A1     N3

[5 marks]

b.

Question

An arithmetic sequence has \({u_1} = {\text{lo}}{{\text{g}}_c}\left( p \right)\) and \({u_2} = {\text{lo}}{{\text{g}}_c}\left( {pq} \right)\), where \(c > 1\) and \(p,\,\,q > 0\).

Show that \(d = {\text{lo}}{{\text{g}}_c}\left( q \right)\).

[2]
a.

Let \(p = {c^2}\) and \(q = {c^3}\). Find the value of \(\sum\limits_{n = 1}^{20} {{u_n}} \).

[6]
b.
Answer/Explanation

Markscheme

valid approach involving addition or subtraction       M1
eg  \({u_2} = {\text{lo}}{{\text{g}}_c}\,p + d,\,\,{u_1} – {u_2}\)

correct application of log law      A1
eg  \({\text{lo}}{{\text{g}}_c}\left( {pq} \right) = {\text{lo}}{{\text{g}}_c}\,p + {\text{lo}}{{\text{g}}_c}\,q,\,\,{\text{lo}}{{\text{g}}_c}\left( {\frac{{pq}}{p}} \right)\)

\(d = {\text{lo}}{{\text{g}}_c}\,q\)    AG N0

[2 marks]

a.

METHOD 1 (finding \({u_1}\) and d)

recognizing \(\sum { = {S_{20}}} \) (seen anywhere)      (A1)

attempt to find \({u_1}\) or d using \({\text{lo}}{{\text{g}}_c}\,{c^k} = k\)     (M1)
eg  \({\text{lo}}{{\text{g}}_c}\,c\), \({\text{3}}\,{\text{lo}}{{\text{g}}_c}\,c\), correct value of \({u_1}\) or d

\({u_1}\) = 2, d = 3 (seen anywhere)      (A1)(A1)

correct working     (A1)
eg  \({S_{20}} = \frac{{20}}{2}\left( {2 \times 2 + 19 \times 3} \right),\,\,{S_{20}} = \frac{{20}}{2}\left( {2 + 59} \right),\,\,10\left( {61} \right)\)

\(\sum\limits_{n = 1}^{20} {{u_n}} \) = 610     A1 N2

METHOD 2 (expressing S in terms of c)

recognizing \(\sum { = {S_{20}}} \) (seen anywhere)      (A1)

correct expression for S in terms of c      (A1)
eg  \(10\left( {2\,{\text{lo}}{{\text{g}}_c}\,{c^2} + 19\,{\text{lo}}{{\text{g}}_c}\,{c^3}} \right)\)

\({\text{lo}}{{\text{g}}_c}\,{c^2} = 2,\,\,\,{\text{lo}}{{\text{g}}_c}\,{c^3} = 3\)  (seen anywhere)     (A1)(A1)

correct working      (A1)

eg  \({S_{20}} = \frac{{20}}{2}\left( {2 \times 2 + 19 \times 3} \right),\,\,{S_{20}} = \frac{{20}}{2}\left( {2 + 59} \right),\,\,10\left( {61} \right)\)

\(\sum\limits_{n = 1}^{20} {{u_n}} \) = 610     A1 N2

METHOD 3 (expressing S in terms of c)

recognizing \(\sum { = {S_{20}}} \) (seen anywhere)      (A1)

correct expression for S in terms of c      (A1)
eg  \(10\left( {2\,{\text{lo}}{{\text{g}}_c}\,{c^2} + 19\,{\text{lo}}{{\text{g}}_c}\,{c^3}} \right)\)

correct application of log law     (A1)
eg  \(2\,{\text{lo}}{{\text{g}}_c}\,{c^2} = \,\,{\text{lo}}{{\text{g}}_c}\,{c^4},\,\,19\,{\text{lo}}{{\text{g}}_c}\,{c^3} = \,\,{\text{lo}}{{\text{g}}_c}\,{c^{57}},\,\,10\,\left( {{\text{lo}}{{\text{g}}_c}\,{{\left( {{c^2}} \right)}^2} + \,\,{\text{lo}}{{\text{g}}_c}\,{{\left( {{c^3}} \right)}^{19}}} \right),\,\,10\,\left( {{\text{lo}}{{\text{g}}_c}\,{c^4} + \,{\text{lo}}{{\text{g}}_c}\,{c^{57}}} \right),\,\,10\left( {{\text{lo}}{{\text{g}}_c}\,{c^{61}}} \right)\)

correct application of definition of log      (A1)
eg  \({\text{lo}}{{\text{g}}_c}\,{c^{61}} = 61,\,\,{\text{lo}}{{\text{g}}_c}\,{c^4} = 4,\,\,{\text{lo}}{{\text{g}}_c}\,{c^{57}} = 57\)

correct working     (A1)
eg  \({S_{20}} = \frac{{20}}{2}\left( {4 + 57} \right),\,\,10\left( {61} \right)\)

\(\sum\limits_{n = 1}^{20} {{u_n}} \) = 610     A1 N2

[6 marks]

b.
Scroll to Top