IB DP Maths Topic 1.1 Sigma notation SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Expand \(\sum\limits_{r = 4}^7 {{2^r}} \) as the sum of four terms.

[1]
a.

(i)     Find the value of \(\sum\limits_{r = 4}^{30} {{2^r}} \) .

(ii)    Explain why \(\sum\limits_{r = 4}^\infty  {{2^r}} \) cannot be evaluated.

[6]
b.
Answer/Explanation

Markscheme

\(\sum\limits_{r = 4}^7 {{2^r}}  = {2^4} + {2^5} + {2^6} + {2^7}\) (accept \(16 + 32 + 64 + 128\) )     A1     N1

[1 mark]

a.

(i) METHOD 1

recognizing a GP     (M1)

\({u_1} = {2^4}\) , \(r = 2\) , \(n = 27\)     (A1)

correct substitution into formula for sum     (A1)

e.g. \({S_{27}} = \frac{{{2^4}({2^{27}} – 1)}}{{2 – 1}}\)

\({S_{27}} = 2147483632\)     A1     N4

METHOD 2

recognizing \(\sum\limits_{r = 4}^{30} { = \sum\limits_{r = 1}^{30} { – \sum\limits_{r = 1}^3 {} } } \)     (M1)

recognizing GP with \({u_1} = 2\) , \(r = 2\) , \(n = 30\)     (A1)

correct substitution into formula for sum

\({S_{30}} = \frac{{2({2^{30}} – 1)}}{{2 – 1}}\)     (A1)

\( = 214783646\)

\(\sum\limits_{r = 4}^{30} {{2^r}}  = 2147483646 – (2 + 4 + 8)\)

\( = 2147483632\)     A1     N4

(ii) valid reason (e.g. infinite GP, diverging series), and \(r \ge 1\) (accept \(r > 1\) )     R1R1     N2

[6 marks]

b.

Question

Ten students were surveyed about the number of hours, \(x\), they spent browsing the Internet during week 1 of the school year. The results of the survey are given below.

\[\sum\limits_{i = 1}^{10} {{x_i} = 252,{\text{ }}\sigma  = 5{\text{ and median}} = 27.} \]

During week 4, the survey was extended to all 200 students in the school. The results are shown in the cumulative frequency graph:

N16/5/MATME/SP2/ENG/TZ0/08.d

Find the mean number of hours spent browsing the Internet.

[2]
a.

During week 2, the students worked on a major project and they each spent an additional five hours browsing the Internet. For week 2, write down

(i)     the mean;

(ii)     the standard deviation.

[2]
b.

During week 3 each student spent 5% less time browsing the Internet than during week 1. For week 3, find

(i)     the median;

(ii)     the variance.

[6]
c.

(i)     Find the number of students who spent between 25 and 30 hours browsing the Internet.

(ii)     Given that 10% of the students spent more than k hours browsing the Internet, find the maximum value of \(k\).

[6]
d.
Answer/Explanation

Markscheme

attempt to substitute into formula for mean     (M1)

eg\(\,\,\,\,\,\)\(\frac{{\Sigma x}}{{10}},{\text{ }}\frac{{252}}{n},{\text{ }}\frac{{252}}{{10}}\)

mean \( = 25.2{\text{ (hours)}}\)     A1     N2

[2 marks]

a.

(i)     mean \( = 30.2{\text{ (hours)}}\)     A1 N1

(ii)     \(\sigma  = 5{\text{ (hours)}}\)     A1     N1

[2 marks]

b.

(i)     valid approach     (M1)

eg\(\,\,\,\,\,\)95%, 5% of 27

correct working     (A1)

eg\(\,\,\,\,\,\)\(0.95 \times 27,{\text{ }}27 – (5\% {\text{ of }}27)\)

median \( = 25.65{\text{ (exact), }}25.7{\text{ (hours)}}\)     A1     N2

(ii)     METHOD 1

variance \( = {({\text{standard deviation}})^2}\) (seen anywhere)     (A1)

valid attempt to find new standard deviation     (M1)

eg\(\,\,\,\,\,\)\({\sigma _{new}} = 0.95 \times 5,{\text{ }}4.75\)

variance \( = 22.5625{\text{ }}({\text{exact}}),{\text{ }}22.6\)     A1     N2

METHOD 2

variance \( = {({\text{standard deviation}})^2}\) (seen anywhere)     (A1)

valid attempt to find new variance     (M1)

eg\(\,\,\,\,\,\)\({0.95^2}{\text{ }},{\text{ }}0.9025 \times {\sigma ^2}\)

new variance \( = 22.5625{\text{ }}({\text{exact}}),{\text{ }}22.6\)     A1     N2

[6 marks]

c.

(i)     both correct frequencies     (A1)

eg\(\,\,\,\,\,\)80, 150

subtracting their frequencies in either order     (M1)

eg\(\,\,\,\,\,\)\(150 – 80,{\text{ }}80 – 150\)

70 (students)     A1     N2

(ii)     evidence of a valid approach     (M1)

eg\(\,\,\,\,\,\)10% of 200, 90%

correct working     (A1)

eg\(\,\,\,\,\,\)\(0.90 \times 200,{\text{ }}200 – 20\), 180 students

\(k = 35\)     A1     N3

[6 marks]

d.

Question

Let \(f\left( x \right) = {{\text{e}}^{2\,{\text{sin}}\left( {\frac{{\pi x}}{2}} \right)}}\), for x > 0.

The k th maximum point on the graph of f has x-coordinate xk where \(k \in {\mathbb{Z}^ + }\).

Given that xk + 1 = xk + a, find a.

[4]
a.

Hence find the value of n such that \(\sum\limits_{k = 1}^n {{x_k} = 861} \).

[4]
b.
Answer/Explanation

Markscheme

valid approach to find maxima     (M1)

eg  one correct value of xk, sketch of f

any two correct consecutive values of xk      (A1)(A1)

eg  x1 = 1, x2 = 5

a = 4      A1 N3

[4 marks]

a.

recognizing the sequence x1,  x2,  x3, …, xn is arithmetic  (M1)

eg  d = 4

correct expression for sum       (A1)

eg  \(\frac{n}{2}\left( {2\left( 1 \right) + 4\left( {n – 1} \right)} \right)\)

valid attempt to solve for n      (M1)

eg  graph, 2n2n − 861 = 0

n = 21       A1 N2

[4 marks]

b.
Scroll to Top