IB DP Maths Topic 1.2 Elementary treatment of exponents and logarithms SL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Find \({\log _2}32\) .

[1]
a.

Given that \({\log _2}\left( {\frac{{{{32}^x}}}{{{8^y}}}} \right)\) can be written as \(px + qy\) , find the value of p and of q.

[4]
b.
Answer/Explanation

Markscheme

5     A1     N1

[1 mark]

a.

METHOD 1

\({\log _2}\left( {\frac{{{{32}^x}}}{{{8^y}}}} \right) = {\log _2}{32^x} – {\log _2}{8^y}\)     (A1)

\( = x{\log _2}32 – y{\log _2}8\)     (A1)

\({\log _2}8 = 3\)     (A1)

\(p = 5\) , \(q = – 3\) (accept \(5x – 3y\) )     A1      N3 

METHOD 2

\(\frac{{{{32}^x}}}{{{8^y}}} = \frac{{{{({2^5})}^x}}}{{{{({2^3})}^y}}}\)     (A1) 

\( = \frac{{{2^5}^x}}{{{2^3}^y}}\)     (A1)

\( = {2^{5x – 3y}}\)     (A1)

\({\log _2}({2^{5x – 3y}}) = 5x – 3y\)

\(p = 5\) , \(q = – 3\) (accept \(5x – 3y\) )     A1      N3

[4 marks]

b.

Question

Solve \({\log _2}x + {\log _2}(x – 2) = 3\) , for \(x > 2\) .

Answer/Explanation

Markscheme

recognizing \(\log a + \log b = \log ab\) (seen anywhere)     (A1)

e.g. \({\log _2}(x(x – 2))\) , \({x^2} – 2x\)

recognizing \({\log _a}b = x \Leftrightarrow {a^x} = b\)     (A1)

e.g. \({2^3} = 8\)

correct simplification     A1

e.g. \(x(x – 2) = {2^3}\) , \({x^2} – 2x – 8\)

evidence of correct approach to solve     (M1)

e.g. factorizing, quadratic formula

correct working     A1

e.g. \((x – 4)(x + 2)\) , \(\frac{{2 \pm \sqrt {36} }}{2}\)

\(x = 4\)     A2     N3

[7 marks]

 

Question

Write down the value of

(i)     \({\log _3}27\);

[1]
a(i).

(ii)     \({\log _8}\frac{1}{8}\);

[1]
a(ii).

(iii)     \({\log _{16}}4\).

[1]
a(iii).

Hence, solve \({\log _3}27 + {\log _8}\frac{1}{8} – {\log _{16}}4 = {\log _4}x\).

[3]
b.
Answer/Explanation

Markscheme

(i)     \({\log _3}27 = 3\)     A1     N1

[1 mark]

a(i).

(ii)     \({\log _8}\frac{1}{8} =  – 1\)     A1     N1

[1 mark]

a(ii).

(iii)     \({\log _{16}}4 = \frac{1}{2}\)     A1     N1

[1 mark]

a(iii).

correct equation with their three values     (A1)

eg     \(\frac{3}{2} = {\log _4}x{\text{, }}3 + ( – 1) – \frac{1}{2} = {\log _4}x\)

correct working involving powers     (A1)

eg     \(x = {4^{\frac{3}{2}}}{\text{, }}{4^{\frac{3}{2}}} = {4^{{{\log }_4}x}}\)

\(x = 8\)     A1     N2

[3 marks]

b.

Question

Find the value of each of the following, giving your answer as an integer.

\({\log _6}36\)

[2]
a.

\({\log _6}4 + {\log _6}9\)

[2]
b.

\({\log _6}2 – {\log _6}12\)

[3]
c.
Answer/Explanation

Markscheme

correct approach     (A1)

eg     \({6^x} = 36,{\text{ }}{6^2}\)

\(2\)      A1     N2

[2 marks]

a.

correct simplification     (A1)

eg     \({\log _6}36,{\text{ }}\log (4 \times 9)\)

\(2\)      A1      N2

[2 marks]

b.

correct simplification     (A1)

eg     \({\log _6}\frac{2}{{12}},{\text{ }}\log (2 \div 12)\)

correct working     (A1)

eg     \({\log _6}\frac{1}{6},{\text{ }}{6^{ – 1}} = \frac{1}{6}{,6^x} = \frac{1}{6}\)

\(-1\)     A1     N2

[3 marks]

c.

Question

Let \(x = \ln 3\) and \(y = \ln 5\). Write the following expressions in terms of \(x\) and \(y\).

\(\ln \left( {\frac{5}{3}} \right)\).

[2]
a.

\(\ln 45\).

[4]
b.
Answer/Explanation

Markscheme

correct approach     (A1)

eg\(\,\,\,\,\,\)\(\ln 5 – \ln 3\)

\(\ln \left( {\frac{5}{3}} \right) = y – x\)    A1     N2

[2 marks]

a.

recognizing factors of 45 (may be seen in log expansion)     (M1)

eg\(\,\,\,\,\,\)\(\ln (9 \times 5),{\text{ }}3 \times 3 \times 5,{\text{ }}\log {3^2} \times \log 5\)

correct application of \(\log (ab) = \log a + \log b\)     (A1)

eg\(\,\,\,\,\,\)\(\ln 9 + \ln 5,{\text{ }}\ln 3 + \ln 3 + \ln 5,{\text{ }}\ln {3^2} + \ln 5\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(2\ln 3 + \ln 5,{\text{ }}x + x + y\)

\(\ln 45 = 2x + y\)    A1     N3

[4 marks]

b.

Question

An arithmetic sequence has \({u_1} = {\text{lo}}{{\text{g}}_c}\left( p \right)\) and \({u_2} = {\text{lo}}{{\text{g}}_c}\left( {pq} \right)\), where \(c > 1\) and \(p,\,\,q > 0\).

Show that \(d = {\text{lo}}{{\text{g}}_c}\left( q \right)\).

[2]
a.

Let \(p = {c^2}\) and \(q = {c^3}\). Find the value of \(\sum\limits_{n = 1}^{20} {{u_n}} \).

[6]
b.
Answer/Explanation

Markscheme

valid approach involving addition or subtraction       M1
eg  \({u_2} = {\text{lo}}{{\text{g}}_c}\,p + d,\,\,{u_1} – {u_2}\)

correct application of log law      A1
eg  \({\text{lo}}{{\text{g}}_c}\left( {pq} \right) = {\text{lo}}{{\text{g}}_c}\,p + {\text{lo}}{{\text{g}}_c}\,q,\,\,{\text{lo}}{{\text{g}}_c}\left( {\frac{{pq}}{p}} \right)\)

\(d = {\text{lo}}{{\text{g}}_c}\,q\)    AG N0

[2 marks]

a.

METHOD 1 (finding \({u_1}\) and d)

recognizing \(\sum { = {S_{20}}} \) (seen anywhere)      (A1)

attempt to find \({u_1}\) or d using \({\text{lo}}{{\text{g}}_c}\,{c^k} = k\)     (M1)
eg  \({\text{lo}}{{\text{g}}_c}\,c\), \({\text{3}}\,{\text{lo}}{{\text{g}}_c}\,c\), correct value of \({u_1}\) or d

\({u_1}\) = 2, d = 3 (seen anywhere)      (A1)(A1)

correct working     (A1)
eg  \({S_{20}} = \frac{{20}}{2}\left( {2 \times 2 + 19 \times 3} \right),\,\,{S_{20}} = \frac{{20}}{2}\left( {2 + 59} \right),\,\,10\left( {61} \right)\)

\(\sum\limits_{n = 1}^{20} {{u_n}} \) = 610     A1 N2

METHOD 2 (expressing S in terms of c)

recognizing \(\sum { = {S_{20}}} \) (seen anywhere)      (A1)

correct expression for S in terms of c      (A1)
eg  \(10\left( {2\,{\text{lo}}{{\text{g}}_c}\,{c^2} + 19\,{\text{lo}}{{\text{g}}_c}\,{c^3}} \right)\)

\({\text{lo}}{{\text{g}}_c}\,{c^2} = 2,\,\,\,{\text{lo}}{{\text{g}}_c}\,{c^3} = 3\)  (seen anywhere)     (A1)(A1)

correct working      (A1)

eg  \({S_{20}} = \frac{{20}}{2}\left( {2 \times 2 + 19 \times 3} \right),\,\,{S_{20}} = \frac{{20}}{2}\left( {2 + 59} \right),\,\,10\left( {61} \right)\)

\(\sum\limits_{n = 1}^{20} {{u_n}} \) = 610     A1 N2

METHOD 3 (expressing S in terms of c)

recognizing \(\sum { = {S_{20}}} \) (seen anywhere)      (A1)

correct expression for S in terms of c      (A1)
eg  \(10\left( {2\,{\text{lo}}{{\text{g}}_c}\,{c^2} + 19\,{\text{lo}}{{\text{g}}_c}\,{c^3}} \right)\)

correct application of log law     (A1)
eg  \(2\,{\text{lo}}{{\text{g}}_c}\,{c^2} = \,\,{\text{lo}}{{\text{g}}_c}\,{c^4},\,\,19\,{\text{lo}}{{\text{g}}_c}\,{c^3} = \,\,{\text{lo}}{{\text{g}}_c}\,{c^{57}},\,\,10\,\left( {{\text{lo}}{{\text{g}}_c}\,{{\left( {{c^2}} \right)}^2} + \,\,{\text{lo}}{{\text{g}}_c}\,{{\left( {{c^3}} \right)}^{19}}} \right),\,\,10\,\left( {{\text{lo}}{{\text{g}}_c}\,{c^4} + \,{\text{lo}}{{\text{g}}_c}\,{c^{57}}} \right),\,\,10\left( {{\text{lo}}{{\text{g}}_c}\,{c^{61}}} \right)\)

correct application of definition of log      (A1)
eg  \({\text{lo}}{{\text{g}}_c}\,{c^{61}} = 61,\,\,{\text{lo}}{{\text{g}}_c}\,{c^4} = 4,\,\,{\text{lo}}{{\text{g}}_c}\,{c^{57}} = 57\)

correct working     (A1)
eg  \({S_{20}} = \frac{{20}}{2}\left( {4 + 57} \right),\,\,10\left( {61} \right)\)

\(\sum\limits_{n = 1}^{20} {{u_n}} \) = 610     A1 N2

[6 marks]

b.
Scroll to Top