IB DP Maths Topic 1.3 Calculation of binomial coefficients using Pascal’s triangle SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

In the expansion of \({(3x – 2)^{12}}\) , the term in \({x^5}\) can be expressed as \(\left( {\begin{array}{*{20}{c}}
{12}\\
r
\end{array}} \right) \times {(3x)^p} \times {( – 2)^q}\) .

(a)     Write down the value of \(p\) , of \(q\) and of \(r\) .

(b)     Find the coefficient of the term in \({x^5}\) .

[5]
.

Write down the value of \(p\) , of \(q\) and of \(r\) .

[3]
a.

Find the coefficient of the term in \({x^5}\) .

[2]
b.
Answer/Explanation

Markscheme

(a)     \(p = 5\) , \(q = 7\) , \(r = 7\)    (accept \(r = 5\))     A1A1A1     N3

[3 marks]

(b)     correct working     (A1)

eg   \(\left( {\begin{array}{*{20}{c}}
{12}\\
7
\end{array}} \right) \times {(3x)^5} \times {( – 2)^7}\) , \(792\) , \(243\) , \( – {2^7}\) , \(24634368\)

coefficient of term in \({x^5}\) is \( – 24634368\)     A1     N2

Note: Do not award the final A1 for an answer that contains \(x\).

[2 marks]

Total [5 marks].

\(p = 5\) , \(q = 7\) , \(r = 7\)    (accept \(r = 5\))     A1A1A1     N3

[3 marks]

a.

correct working     (A1)

eg   \(\left( {\begin{array}{*{20}{c}}
{12}\\
7
\end{array}} \right) \times {(3x)^5} \times {( – 2)^7}\) , \(792\) , \(243\) , \( – {2^7}\) , \(24634368\)

coefficient of term in \({x^5}\) is \( – 24634368\)     A1     N2

Note: Do not award the final A1 for an answer that contains \(x\).

[2 marks]

Total [5 marks]

b.

Question

Consider the expansion of \({(2x + 3)^8}\).

Write down the number of terms in this expansion.

[1]
a.

Find the term in \({x^3}\).

[4]
b.
Answer/Explanation

Markscheme

9 terms     A1     N1

[1 mark]

a.

valid approach to find the required term     (M1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} 8 \\ r \end{array}} \right){(2x)^{8 – r}}{(3)^r},{\text{ }}{(2x)^8}{(3)^0} + {(2x)^7}{(3)^1} +  \ldots \), Pascal’s triangle to \({{\text{8}}^{{\text{th}}}}\) row

identifying correct term (may be indicated in expansion)     (A1)

eg\(\;\;\;{{\text{6}}^{{\text{th}}}}{\text{ term, }}r = 5,{\text{ }}\left( {\begin{array}{*{20}{c}} 8 \\ 5 \end{array}} \right),{\text{ (2x}}{{\text{)}}^3}{(3)^5}\)

correct working (may be seen in expansion)     (A1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} 8 \\ 5 \end{array}} \right){(2x)^3}{(3)^5},{\text{ }}56 \times {2^3} \times {3^5}\)

\(108864{x^3}\;\;\;\)(accept \(109000{x^3}\))     A1     N3

[4 marks]

Notes:     Do not award any marks if there is clear evidence of adding instead of multiplying.

Do not award final A1 for a final answer of \(108864\), even if \(108864{x^3}\) is seen previously.

If no working shown award N2 for \(108864\).

b.

Question

The third term in the expansion of \({(x + k)^8}\) is \(63{x^6}\). Find the possible values of \(k\).

Answer/Explanation

Markscheme

valid approach to find the required term     (M1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} 8 \\ r \end{array}} \right){x^{8 – r}}{k^r}\), Pascal’s triangle to \({{\text{8}}^{{\text{th}}}}\) row, \({x^8} + 8{x^7}k + 28{x^6}{k^2} +  \ldots \)

identifying correct term (may be indicated in expansion)     (A1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} 8 \\ 2 \end{array}} \right){x^6}{k^2},{\text{ }}\left( {\begin{array}{*{20}{c}} 8 \\ 6 \end{array}} \right){x^6}{k^2},{\text{ }}r = 2\)

setting up equation in \(k\) with their coefficient/term     (M1)

eg\(\;\;\;28{k^2}{x^6} = 63{x^6},{\text{ }}\left( {\begin{array}{*{20}{c}} 8 \\ 6 \end{array}} \right){k^2} = 63\)

\(k =  \pm 1.5{\text{ (exact)}}\)     A1A1     N3

[5 marks]

Scroll to Top