IB DP Maths Topic 1.3 The binomial theorem: expansion of (a+b)n, n∈N SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Find the term \({x^3}\) in the expansion of \({\left( {\frac{2}{3}x – 3} \right)^8}\) .

Answer/Explanation

Markscheme

evidence of using binomial expansion     (M1)

e.g. selecting correct term, \({a^8}{b^0} + \left( {\begin{array}{*{20}{c}}
8\\
1
\end{array}} \right){a^7}b + \left( {\begin{array}{*{20}{c}}
8\\
2
\end{array}} \right){a^6}{b^2} + \ldots \)

evidence of calculating the factors, in any order     A1A1A1

e.g. 56 , \(\frac{{{2^2}}}{{{3^3}}}\) , \( – {3^5}\) , \(\left( {\begin{array}{*{20}{c}}
8\\
5
\end{array}} \right){\left( {\frac{2}{3}x} \right)^3}{( – 3)^5}\)

\( – 4032{x^3}\) (accept = \( – 4030{x^3}\) to 3 s.f.)     A1     N2

[5 marks]

Question

Expand \({(x – 2)^4}\) and simplify your result.

[3]
a.

Find the term in \({x^3}\) in \((3x + 4){(x – 2)^4}\) .

[3]
b.
Answer/Explanation

Markscheme

evidence of expanding     M1

e.g. \({(x – 2)^4} = {x^4} + 4{x^3}( – 2) + 6{x^2}{( – 2)^2} + 4x{( – 2)^3} + {( – 2)^4}\)     A2     N2

\({(x – 2)^4} = {x^4} – 8{x^3} + 24{x^2} – 32x + 16\)

[3 marks]

a.

finding coefficients, \(3 \times 24( = 72)\) , \(4 \times( – 8)( = – 32)\)     (A1)(A1)

term is \(40{x^3}\)     A1     N3

[3 marks]

b.

Question

Let \(f(x) = {x^3} – 4x + 1\) .

Expand \({(x + h)^3}\) .

[2]
a.

Use the formula \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) – f(x)}}{h}\) to show that the derivative of \(f(x)\) is \(3{x^2} – 4\) .

[4]
b.

The tangent to the curve of f at the point \({\text{P}}(1{\text{, }} – 2)\) is parallel to the tangent at a point Q. Find the coordinates of Q.

[4]
c.

The graph of f is decreasing for \(p < x < q\) . Find the value of p and of q.

[3]
d.

Write down the range of values for the gradient of \(f\) .

[2]
e.
Answer/Explanation

Markscheme

attempt to expand     (M1)

\({(x + h)^3} = {x^3} + 3{x^2}h + 3x{h^2} + {h^3}\)     A1     N2

[2 marks]

a.

evidence of substituting \(x + h\)     (M1)

correct substitution     A1

e.g. \(f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{{{(x + h)}^3} – 4(x + h) + 1 – ({x^3} – 4x + 1)}}{h}\)

simplifying     A1

e.g. \(\frac{{({x^3} + 3{x^2}h + 3x{h^2} + {h^3} – 4x – 4h + 1 – {x^3} + 4x – 1)}}{h}\)

factoring out h     A1

e.g. \(\frac{{h(3{x^2} + 3xh + {h^2} – 4)}}{h}\)

\(f'(x) = 3{x^2} – 4\)     AG     N0

[4 marks]

b.

\(f'(1) = – 1\)    (A1)

setting up an appropriate equation     M1

e.g. \(3{x^2} – 4 = – 1\)

at Q, \(x = – 1,y = 4\) (Q is \(( – 1{\text{, }}4)\))    A1    A1

[4 marks]

c.

recognizing that f is decreasing when \(f'(x) < 0\)     R1

correct values for p and q (but do not accept \(p = 1.15{\text{, }}q = – 1.15\) )     A1A1     N1N1

e.g. \(p = – 1.15{\text{, }}q = 1.15\) ; \( \pm \frac{2}{{\sqrt 3 }}\) ; an interval such as \( – 1.15 \le x \le 1.15\)

[3 marks]

d.

\(f'(x) \ge – 4\) , \(y \ge – 4\) , \(\left[ { – 4,\infty } \right[\)     A2     N2

[2 marks]

e.

Question

Find the term in \({x^4}\) in the expansion of \({\left( {3{x^2} – \frac{2}{x}} \right)^5}\) .

Answer/Explanation

Markscheme

evidence of substituting into binomial expansion     (M1)

e.g. \({a^5} + \left( {\begin{array}{*{20}{c}}
5\\
1
\end{array}} \right){a^4}b + \left( {\begin{array}{*{20}{c}}
5\\
2
\end{array}} \right){a^3}{b^2} +  \ldots \)

identifying correct term for \({x^4}\)    (M1)

evidence of calculating the factors, in any order     A1A1A1

e.g. \(\left( {\begin{array}{*{20}{c}}
5\\
2
\end{array}} \right),27{x^6},\frac{4}{{{x^2}}}\) ; \(10{(3{x^2})^3}{\left( {\frac{{ – 2}}{x}} \right)^2}\)

Note: Award A1 for each correct factor.

\({\rm{term}} = 1080{x^4}\)     A1     N2

Note: Award M1M1A1A1A1A0 for 1080 with working shown.

[6 marks]

Question

Consider the expansion of \({(3{x^2} + 2)^9}\) .

Write down the number of terms in the expansion.

[1]
a.

Find the term in \({x^4}\) .

[5]
b.
Answer/Explanation

Markscheme

10 terms     A1     N1

[1 mark]

a.

evidence of binomial expansion     (M1)

e.g. \({a^9}{b^0} + \left( \begin{array}{l}
9\\
1
\end{array} \right){a^8}b + \left( \begin{array}{l}
9\\
2
\end{array} \right){a^7}{b^2} + \ldots \), \(\left( \begin{array}{l}
9\\
r
\end{array} \right){(a)^{n – r}}{(b)^r}\) , Pascal’s triangle

evidence of correct term     (A1)

e.g. 8th term, \(r = 7\) , \(\left( \begin{array}{l}
9\\
7
\end{array} \right)\) , \({(3{x^2})^2}{2^7}\)

correct expression of complete term     (A1)

e.g. \(\left( \begin{array}{l}
9\\
7
\end{array} \right){(3{x^2})^2}{(2)^7}\) , \(_2^9C{(3{x^2})^2}{(2)^7}\) , \(36 \times 9 \times 128\)

\(41472{x^4}\) (accept \(41500{x^4}\) )     A1     N2

[4 marks]

b.

Question

Consider the expansion of \({\left( {2{x^3} + \frac{b}{x}} \right)^8} = 256{x^{24}} + 3072{x^{20}} +  \ldots  + k{x^0} +  \ldots \) .

Find b.

[3]
a.

Find k.

[3]
b.
Answer/Explanation

Markscheme

valid attempt to find term in \({x^{20}}\)     (M1)

e.g. \(\left( {\begin{array}{*{20}{c}}
8\\
1
\end{array}} \right)({2^7})(b)\) , \({(2{x^3})^7}\left( {\frac{b}{x}} \right) = 3072\)

correct equation     A1

e.g. \(\left( {\begin{array}{*{20}{c}}
8\\
1
\end{array}} \right)({2^7})(b) = 3072\)

\(b = 3\)     A1     N2

[3 marks]

a.

evidence of choosing correct term     (M1)

e.g. 7th term, \(r = 6\)

correct expression     A1

e.g. \(\left( {\begin{array}{*{20}{c}}
8\\
6
\end{array}} \right){(2{x^3})^2}{\left( {\frac{3}{x}} \right)^6}\)

\(k = 81648\) (accept \(81600\) )     A1     N2

[3 marks]

b.

Question

The third term in the expansion of \({(2x + p)^6}\) is \(60{x^4}\) . Find the possible values of p .

Answer/Explanation

Markscheme

attempt to expand binomial     (M1)

e.g. \({(2x)^6}{p^0} + \left( {\begin{array}{*{20}{c}}
6\\
1
\end{array}} \right){(2x)^5}{(p)^1} +  \ldots \) , \(\left( {\begin{array}{*{20}{c}}
n\\
r
\end{array}} \right){(2x)^r}{(p)^{n – r}}\)

one correct calculation for term in \({x^4}\) in the expansion for power 6     (A1)

e.g. 15 , \(16{x^4}\)

correct expression for term in \({x^4}\)    (A1)

e.g. \(\left( {\begin{array}{*{20}{c}}
6\\
2
\end{array}} \right){(2x)^4}{(p)^2}\) , \({15.2^4}{p^2}\)

Notes: Accept sloppy notation e.g. omission of brackets around \(2x\) .

Accept absence of \(x\) in middle factor.

correct term     (A1)

e.g. \(240{p^2}{x^4}\) (accept absence of \({x^4}\) )

setting up equation with their coefficient equal to 60     M1

e.g. \(\left( {\begin{array}{*{20}{c}}
6\\
2
\end{array}} \right){(2)^4}{(p)^2} = 60\) , \(240{p^2}{x^4} = 60{x^4}\) , \({p^2} = \frac{{60}}{{240}}\)

\(p = \pm \frac{1}{2}(p = \pm 0.5)\)     A1A1     N3

[7 marks]

Question

In the expansion of \({(3x – 2)^{12}}\) , the term in \({x^5}\) can be expressed as \(\left( {\begin{array}{*{20}{c}}
{12}\\
r
\end{array}} \right) \times {(3x)^p} \times {( – 2)^q}\) .

(a)     Write down the value of \(p\) , of \(q\) and of \(r\) .

(b)     Find the coefficient of the term in \({x^5}\) .

[5]
.

Write down the value of \(p\) , of \(q\) and of \(r\) .

[3]
a.

Find the coefficient of the term in \({x^5}\) .

[2]
b.
Answer/Explanation

Markscheme

(a)     \(p = 5\) , \(q = 7\) , \(r = 7\)    (accept \(r = 5\))     A1A1A1     N3

[3 marks]

(b)     correct working     (A1)

eg   \(\left( {\begin{array}{*{20}{c}}
{12}\\
7
\end{array}} \right) \times {(3x)^5} \times {( – 2)^7}\) , \(792\) , \(243\) , \( – {2^7}\) , \(24634368\)

coefficient of term in \({x^5}\) is \( – 24634368\)     A1     N2

Note: Do not award the final A1 for an answer that contains \(x\).

[2 marks]

Total [5 marks]

.

\(p = 5\) , \(q = 7\) , \(r = 7\)    (accept \(r = 5\))     A1A1A1     N3

[3 marks]

a.

correct working     (A1)

eg   \(\left( {\begin{array}{*{20}{c}}
{12}\\
7
\end{array}} \right) \times {(3x)^5} \times {( – 2)^7}\) , \(792\) , \(243\) , \( – {2^7}\) , \(24634368\)

coefficient of term in \({x^5}\) is \( – 24634368\)     A1     N2

Note: Do not award the final A1 for an answer that contains \(x\).

[2 marks]

Total [5 marks]

b.

Question

The constant term in the expansion of \({\left( {\frac{x}{a} + \frac{{{a^2}}}{x}} \right)^6}\) , where \(a \in \mathbb{R}\) is \(1280\). Find \(a\) .

Answer/Explanation

Markscheme

evidence of binomial expansion     (M1)

eg selecting correct term,\({\left( {\frac{x}{a}} \right)^6}{\left( {\frac{{{a^2}}}{x}} \right)^0} + \left( \begin{array}{l}
6\\
1
\end{array} \right){\left( {\frac{x}{a}} \right)^5}{\left( {\frac{{{a^2}}}{x}} \right)^1} +  \ldots \)

evidence of identifying constant term in expansion for power \(6\)     (A1)

eg   \(r = 3\) , 4th term

evidence of correct term (may be seen in equation)     A2

eg   \(20\frac{{{a^6}}}{{{a^3}}}\) , \(\left( \begin{array}{l}
6\\
3
\end{array} \right){\left( {\frac{x}{a}} \right)^3}{\left( {\frac{{{a^2}}}{x}} \right)^3}\)

attempt to set up their equation     (M1)

eg   \(\left( \begin{array}{l}
6\\
3
\end{array} \right){\left( {\frac{x}{a}} \right)^3}{\left( {\frac{{{a^2}}}{x}} \right)^3} = 1280\), \({a^3} = 1280\)

correct equation in one variable \(a\)     (A1)

eg   \(20{a^3} = 1280\) , \({a^3} = 64\)

\(a = 4\)     A1     N4

[7 marks]

Question

Consider the expansion of \({(x + 3)^{10}}\).

Write down the number of terms in this expansion.

[1]
a.

Find the term containing \({x^3}\).

[4]
b.
Answer/Explanation

Markscheme

11 terms     A1     N1

[1 mark]

a.

evidence of binomial expansion     (M1)

eg     \(\left( \begin{array}{c}n\\r\end{array} \right)\) \({a^{n – r}}{b^r}\), attempt to expand

evidence of choosing correct term     (A1)

eg     \({8^{{\text{th}}}}{\text{ term, }}r = 7\), \(\left( \begin{array}{c}10\\7\end{array} \right)\), \({(x)^3}{(3)^7}\)

correct working     (A1)

eg     \(\left( \begin{array}{c}10\\7\end{array} \right)\) \({(x)^3}{(3)^7}\), \(\left( \begin{array}{c}10\\3\end{array} \right)\)\({(x)^3}{(3)^7}\),

\(262440{x^3}{\text{   (accept }}262000{x^3})\)     A1     N3

[4 marks]

b.

Question

Consider the expansion of \({x^2}{\left( {3{x^2} + \frac{k}{x}} \right)^8}\). The constant term is \({\text{16 128}}\).

Find \(k\).

Answer/Explanation

Markscheme

valid approach     (M1)

eg     \({\text{\(\left( \begin{array}{c}8\\r\end{array} \right)\)}}{\left( {3{x^2}} \right)^{8 – r}}{\left( {\frac{k}{x}} \right)^r}\),

\({\left( {3{x^2}} \right)^8} + {\text{\(\left( \begin{array}{c}8\\1\end{array} \right)\)}}{\left( {3{x^2}} \right)^7}\left( {\frac{k}{x}} \right) + {\text{\(\left( \begin{array}{c}8\\2\end{array} \right)\)}}{\left( {3{x^2}} \right)^6}{\left( {\frac{k}{x}} \right)^2} +  \ldots \), Pascal’s triangle to \({9^{{\text{th}}}}\) line

attempt to find value of r which gives term in \({x^0}\)     (M1)

eg     exponent in binomial must give \({x^{ – 2}},{\text{ }}{x^2}{\left( {{x^2}} \right)^{8 – r}}{\left( {\frac{k}{x}} \right)^r} = {x^0}\)

correct working     (A1)

eg     \(2(8 – r) – r =  – 2,{\text{ }}18 – 3r = 0,{\text{ }}2r + ( – 8 + r) =  – 2\)

evidence of correct term     (A1)

eg     \({\text{\(\left( \begin{array}{c}8\\2\end{array} \right)\), \(\left( \begin{array}{c}8\\6\end{array} \right)\)}}{\left( {3{x^2}} \right)^2}{\left( {\frac{k}{x}} \right)^2},{\text{ }}r = 6,{\text{ }}r = 2\)

equating their term and 16128 to solve for \(k\)     M1

eg     \({x^2}{\text{\(\left( \begin{array}{c}8\\6\end{array} \right)\)}}{\left( {3{x^2}} \right)^2}{\left( {\frac{k}{x}} \right)^6} = 16128,{\text{ }}{k^6} = \frac{{16128}}{{28(9)}}\)

\(k =  \pm 2\)     A1A1     N2

Note: If no working shown, award N0 for \(k = 2\).

Total [7 marks]

Question

Consider the expansion of \({\left( {\frac{{{x^3}}}{2} + \frac{p}{x}} \right)^8}\). The constant term is \(5103\). Find the possible values of \(p\).

Answer/Explanation

Markscheme

valid approach to find the required term     (M1)

eg\(\;\;\;\)\(\left( {\begin{array}{*{20}{c}} 8 \\ r \end{array}} \right){\left( {\frac{{{x^3}}}{2}} \right)^{8 – r}}{\left( {\frac{p}{x}} \right)^r},{\text{ }}{\left( {\frac{{{x^3}}}{2}} \right)^8}{\left( {\frac{p}{x}} \right)^0} + \left( {\begin{array}{*{20}{c}} 8 \\ 1 \end{array}} \right){\left( {\frac{{{x^3}}}{2}} \right)^7}{\left( {\frac{p}{x}} \right)^1} +  \ldots \), Pascal’s triangle to required value

identifying constant term (may be indicated in expansion)     (A1)

eg\(\;\;\;\)\({7^{{\text{th}}}}{\text{ term, }}r = 6,{\text{ }}{\left( {\frac{1}{2}} \right)^2},{\text{ }}\left( {\begin{array}{*{20}{c}} 8 \\ 6 \end{array}} \right),{\text{ }}{\left( {\frac{{{x^3}}}{2}} \right)^2}{\left( {\frac{p}{x}} \right)^6}\)

correct calculation (may be seen in expansion)     (A1)

eg\(\;\;\;\)\(\left( {\begin{array}{*{20}{c}} 8 \\ 6 \end{array}} \right){\left( {\frac{{{x^3}}}{2}} \right)^2}{\left( {\frac{p}{x}} \right)^6},{\text{ }}\frac{{8 \times 7}}{2} \times \frac{{{p^6}}}{{{2^2}}}\)

setting up equation with their constant term equal to \(5103\)     M1

eg\(\;\;\;\)\(\left( {\begin{array}{*{20}{c}} 8 \\ 6 \end{array}} \right){\left( {\frac{{{x^3}}}{2}} \right)^2}{\left( {\frac{p}{x}} \right)^6} = 5103,{\text{ }}{p^6} = \frac{{5103}}{7}\)

\(p =  \pm 3\)     A1A1     N3

[6 marks]

Question

Consider the expansion of \({(2x + 3)^8}\).

Write down the number of terms in this expansion.

[1]
a.

Find the term in \({x^3}\).

[4]
b.
Answer/Explanation

Markscheme

9 terms     A1     N1

[1 mark]

a.

valid approach to find the required term     (M1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} 8 \\ r \end{array}} \right){(2x)^{8 – r}}{(3)^r},{\text{ }}{(2x)^8}{(3)^0} + {(2x)^7}{(3)^1} +  \ldots \), Pascal’s triangle to \({{\text{8}}^{{\text{th}}}}\) row

identifying correct term (may be indicated in expansion)     (A1)

eg\(\;\;\;{{\text{6}}^{{\text{th}}}}{\text{ term, }}r = 5,{\text{ }}\left( {\begin{array}{*{20}{c}} 8 \\ 5 \end{array}} \right),{\text{ (2x}}{{\text{)}}^3}{(3)^5}\)

correct working (may be seen in expansion)     (A1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} 8 \\ 5 \end{array}} \right){(2x)^3}{(3)^5},{\text{ }}56 \times {2^3} \times {3^5}\)

\(108864{x^3}\;\;\;\)(accept \(109000{x^3}\))     A1     N3

[4 marks]

Notes:     Do not award any marks if there is clear evidence of adding instead of multiplying.

Do not award final A1 for a final answer of \(108864\), even if \(108864{x^3}\) is seen previously.

If no working shown award N2 for \(108864\).

b.

Question

The third term in the expansion of \({(x + k)^8}\) is \(63{x^6}\). Find the possible values of \(k\).

Answer/Explanation

Markscheme

valid approach to find the required term     (M1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} 8 \\ r \end{array}} \right){x^{8 – r}}{k^r}\), Pascal’s triangle to \({{\text{8}}^{{\text{th}}}}\) row, \({x^8} + 8{x^7}k + 28{x^6}{k^2} +  \ldots \)

identifying correct term (may be indicated in expansion)     (A1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} 8 \\ 2 \end{array}} \right){x^6}{k^2},{\text{ }}\left( {\begin{array}{*{20}{c}} 8 \\ 6 \end{array}} \right){x^6}{k^2},{\text{ }}r = 2\)

setting up equation in \(k\) with their coefficient/term     (M1)

eg\(\;\;\;28{k^2}{x^6} = 63{x^6},{\text{ }}\left( {\begin{array}{*{20}{c}} 8 \\ 6 \end{array}} \right){k^2} = 63\)

\(k =  \pm 1.5{\text{ (exact)}}\)     A1A1     N3

[5 marks]

Marks available4
Reference code16M.2.sl.TZ1.4

Question

Find the term in \({x^6}\) in the expansion of \({(x + 2)^9}\).

[4]
a.

Hence, find the term in \({x^7}\) in the expansion of \(5x{(x + 2)^9}\).

[2]
b.
Answer/Explanation

Markscheme

valid approach to find the required term     (M1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 9 \\ r \end{array}} \right){(x)^{9 – r}}{(2)^r},{\text{ }}{x^9} + 9{x^8}(2) + \left( {\begin{array}{*{20}{c}} 9 \\ 2 \end{array}} \right){x^7}{(2)^2} + \ldots \), Pascal’s triangle to the 9th row

identifying correct term (may be indicated in expansion)     (A1)

eg\(\,\,\,\,\,\)4th term, \(r = 6,{\text{ }}\left( {\begin{array}{*{20}{c}} 9 \\ 3 \end{array}} \right),{\text{ }}{(x)^6}{(2)^3}\)

correct calculation (may be seen in expansion)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 9 \\ 3 \end{array}} \right){(x)^6}{(2)^3},{\text{ }}84 \times {2^3}\)  

672\({x^6}\)   A1     N3

[4 marks]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)recognizing \({x^7}\) is found when multiplying \(5x \times 672{x^6}\)

\(3360{x^7}\)     A1     N2

[2 marks]

b.

Question

Consider the expansion of \({\left( {{x^2} + \frac{2}{x}} \right)^{10}}\).

Write down the number of terms of this expansion.

[1]
a.

Find the coefficient of \({x^8}\).

[5]
b.
Answer/Explanation

Markscheme

11 terms     A1     N1

[1 mark]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} {10} \\ r \end{array}} \right){({x^2})^{10 – r}}{\left( {\frac{2}{x}} \right)^r},{\text{ }}{a^{10}}{b^0} + \left( {\begin{array}{*{20}{c}} {10} \\ 1 \end{array}} \right){a^9}{b^1}\left( {\begin{array}{*{20}{c}} {10} \\ 2 \end{array}} \right){a^8}{b^2} + \ldots \)

Pascal’s triangle to \({11^{th}}\) row

valid attempt to find value of \(r\) which gives term in \({x^8}\)     (M1)

eg\(\,\,\,\,\,\)\({({x^2})^{10 – r}}\left( {\frac{1}{{{x^r}}}} \right) = {x^8},{\text{ }}{x^{2r}}{\left( {\frac{2}{x}} \right)^{10 – r}} = {x^8}\)

identifying required term (may be indicated in expansion)     (A1)

eg\(\,\,\,\,\,\)\(r = 6,{\text{ }}{{\text{5}}^{{\text{th}}}}{\text{ term, }}{{\text{7}}^{{\text{th}}}}{\text{ term}}\)

correct working (may be seen in expansion)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} {10} \\ 6 \end{array}} \right){({x^2})^6}{\left( {\frac{2}{x}} \right)^4},{\text{ }}210 \times 16\)

3360     A1     N3

[5 marks]

b.

Question

In the expansion of \(a{x^3}{(2 + ax)^{11}}\), the coefficient of the term in \({x^5}\) is 11880. Find the value of \(a\).

Answer/Explanation

Markscheme

valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for \(r\))     (M1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} {11} \\ r \end{array}} \right){(2)^{11 – r}}a{x^r},{\text{ }}\left( {\begin{array}{*{20}{c}} {11} \\ 3 \end{array}} \right){(2)^8}{(ax)^3},{\text{ }}{2^{11}} + \left( {\begin{array}{*{20}{c}} {11} \\ 1 \end{array}} \right){(2)^{10}}{(ax)^1} + \left( {\begin{array}{*{20}{c}} {11} \\ 2 \end{array}} \right){(2)^9}(ax) + \ldots \)

recognizing need to find term in \({x^2}\) in binomial expansion     (A1)

eg\(\,\,\,\,\,\)\(r = 2,{\text{ }}{(ax)^2}\)

correct term or coefficient in binomial expansion (may be seen in equation)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} {11} \\ 2 \end{array}} \right){(ax)^2}{(2)^9},{\text{ }}55({a^2}{x^2})(512),{\text{ }}28160{a^2}\)

setting up equation in \({x^5}\) with their coefficient/term (do not accept other powers of \(x\))     (M1)

eg\(\,\,\,\,\,\)\(a{x^3}\left( {\begin{array}{*{20}{c}} {11} \\ 2 \end{array}} \right){(ax)^2}{(2)^9} = 11880{x^5}\)

correct equation     (A1)

eg\(\,\,\,\,\,\)\(28160{a^3} = 11880\)

\(a = \frac{3}{4}\)     A1     N3

[6 marks]

Question

Consider the expansion of \({\left( {2x + \frac{k}{x}} \right)^9}\), where k > 0 . The coefficient of the term in x3 is equal to the coefficient of the term in  x5. Find k.

Markscheme

valid approach to find one of the required terms (must have correct substitution for parameters but accept “r” or an incorrect value for r)       (M1)

Scroll to Top