IB DP Maths Topic 2.1 Composite functions SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = \frac{{3x}}{2} + 1\) , \(g(x) = 4\cos \left( {\frac{x}{3}} \right) – 1\) . Let \(h(x) = (g \circ f)(x)\) .

Find an expression for \(h(x)\) .

[3]
a.

Write down the period of \(h\) .

[1]
b.

Write down the range of \(h\) .

[2]
c.
Answer/Explanation

Markscheme

attempt to form any composition (even if order is reversed)     (M1)

correct composition \(h(x) = g\left( {\frac{{3x}}{2} + 1} \right)\)     (A1)

\(h(x) = 4\cos \left( {\frac{{\frac{{3x}}{2} + 1}}{3}} \right) – 1\)     \(\left( {4\cos \left( {\frac{1}{2}x + \frac{1}{3}} \right) – 1,4\cos \left( {\frac{{3x + 2}}{6}} \right) – 1} \right)\)     A1     N3

[3 marks]

a.

period is \(4\pi (12.6)\)     A1     N1

[1 mark]

b.

range is \( – 5 \le h(x) \le 3\)  \(\left( {\left[ { – 5,3} \right]} \right)\)     A1A1     N2

[2 marks]

c.

Question

Let \(f(x) = 3x\) , \(g(x) = 2x – 5\) and \(h(x) = (f \circ g)(x)\) .

Find \(h(x)\) .

[2]
a.

Find \({h^{ – 1}}(x)\) .

[3]
b.
Answer/Explanation

Markscheme

attempt to form composite     (M1)

e.g. \(f(2x – 5)\)

\(h(x) = 6x – 15\)     A1     N2

[2 marks]

a.

interchanging x and y     (M1)

evidence of correct manipulation     (A1)

e.g. \(y + 15 = 6x\) , \(\frac{x}{6} = y – \frac{5}{2}\)

\({h^{ – 1}}(x) = \frac{{x + 15}}{6}\)     A1     N3

[3 marks]

b.

Question

Let \(f(x) = 2x + 4\) and \(g(x) = 7{x^2}\) .

Find \({f^{ – 1}}(x)\) .

[3]
a.

Find \((f \circ g)(x)\) .

[2]
b.

Find \((f \circ g)(3.5)\) .

[2]
c.
Answer/Explanation

Markscheme

interchanging x and y (may be seen at any time)     (M1)

evidence of correct manipulation     (A1)

e.g. \(x = 2y + 4\)

\({f^{ – 1}}(x) = \frac{{x – 4}}{2}\) (accept \(y = \frac{{x – 4}}{2},\frac{{x – 4}}{2}\) )     A1     N2

[3 marks]

a.

attempt to form composite (in any order)     (M1)

e.g. \(f(7{x^2}){\text{, }}2(7{x^2}) + 4{\text{, }}7{(2x + 4)^2}\)

\((f \circ g)(x) = 14{x^2} + 4\)     A1     N2

b.

correct substitution     (A1)

e.g. \(7 \times {3.5^2}\) , \(14{(3.5)^2} + 4\)

\((f \circ g)(3.5) = 175.5\) (accept 176)     A1     N2

[2 marks]

c.

Question

Let \(f(x) = 2x + 3\) and \(g(x) = {x^3}\).

Find \((f \circ g)(x)\).

[2]
a.

Solve the equation \((f \circ g)(x) = 0\).

[3]
b.
Answer/Explanation

Markscheme

attempt to form composite (in any order)     (M1)

eg\(\;\;\;f({x^3}),{\text{ }}{(2x + 3)^3}\)

\((f \circ g)(x) = 2{x^3} + 3\)     A1     N2

[2 marks]

a.

evidence of appropriate approach     (M1)

eg\(\;\;\;2{x^3} =  – 3\), sketch

correct working     (A1)

eg\(\;\;\;{x^3} = \frac{{ – 3}}{2}\), sketch

\( – 1.14471\)

\(x = \sqrt[3]{{\frac{{ – 3}}{2}}}\;\;\;{\text{(exact), }} – 1.14{\text{ }}[ – 1.15,{\text{ }} – 1.14]\)     A1     N3

[3 marks]

Total [5 marks]

b.

Question

Consider a function \(f\), for \(0 \le x \le 10\). The following diagram shows the graph of \(f’\), the derivative of \(f\).

The graph of \(f’\) passes through \((2,{\text{ }} – 2)\) and \((5,{\text{ }}1)\), and has \(x\)-intercepts at \(0\), \(4\) and \(6\).

The graph of \(f\) has a local maximum point when \(x = p\). State the value of \(p\), and justify your answer.

[3]
a.

Write down \(f'(2)\).

[1]
b.

Let \(g(x) = \ln \left( {f(x)} \right)\) and \(f(2) = 3\).

Find \(g'(2)\).

[4]
c.

Verify that \(\ln 3 + \int_2^a {g'(x){\text{d}}x = g(a)} \), where \(0 \le a \le 10\).

[4]
d.

The following diagram shows the graph of \(g’\), the derivative of \(g\).

The shaded region \(A\) is enclosed by the curve, the \(x\)-axis and the line \(x = 2\), and has area \({\text{0.66 unit}}{{\text{s}}^{\text{2}}}\).

The shaded region \(B\) is enclosed by the curve, the \(x\)-axis and the line \(x = 5\), and has area \({\text{0.21 unit}}{{\text{s}}^{\text{2}}}\).

Find \(g(5)\).

[4]
e.
Answer/Explanation

Markscheme

\(p = 6\)     A1     N1

recognizing that turning points occur when \(f'(x) = 0\)     R1     N1

eg\(\;\;\;\)correct sign diagram

\(f’\) changes from positive to negative at \(x = 6\)     R1     N1

[3 marks]

a.

\(f'(2) =  – 2\)     A1     N1

[1 mark]

b.

attempt to apply chain rule     (M1)

eg\(\;\;\;\ln (x)’ \times f'(x)\)

correct expression for \(g'(x)\)     (A1)

eg\(\;\;\;g'(x) = \frac{1}{{f(x)}} \times f'(x)\)

substituting \(x = 2\) into their \(g’\)     (M1)

eg\(\;\;\;\frac{{f'(2)}}{{f(2)}}\)

\( – 0.666667\)

\(g'(2) =  – \frac{2}{3}{\text{ (exact), }} – 0.667\)     A1     N3

[4 marks]

c.

evidence of integrating \(g'(x)\)     (M1)

eg\(\;\;\;g(x)|_2^a,{\text{ }}g(x)|_a^2\)

applying the fundamental theorem of calculus (seen anywhere)     R1

eg\(\;\;\;\int_2^a {g'(x) = g(a) – g(2)} \)

correct substitution into integral     (A1)

eg\(\;\;\;\ln 3 + g(a) – g(2),{\text{ }}\ln 3 + g(a) – \ln \left( {f(2)} \right)\)

\(\ln 3 + g(a) – \ln 3\)     A1

\(\ln 3 + \int_2^a {g'(x) = g(a)} \)     AG     N0

[4 marks]

d.

METHOD 1

substituting \(a = 5\) into the formula for \(g(a)\)     (M1)

eg\(\;\;\;\int_2^5 {g'(x){\text{d}}x,{\text{ }}g(5) = \ln 3 + \int_2^5 {g'(x){\text{d}}x\;\;\;} } \left( {{\text{do not accept only }}g(5)} \right)\)

attempt to substitute areas     (M1)

eg\(\;\;\;\ln 3 + 0.66 – 0.21,{\text{ }}\ln 3 + 0.66 + 0.21\)

correct working

eg\(\;\;\;g(5) = \ln 3 + ( – 0.66 + 0.21)\)     (A1)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

METHOD 2

attempt to set up an equation for one shaded region     (M1)

eg\(\;\;\;\int_4^5 {g'(x){\text{d}}x = 0.21,{\text{ }}\int_2^4 {g'(x){\text{d}}x =  – 0.66,{\text{ }}\int_2^5 {g'(x){\text{d}}x =  – 0.45} } } \)

two correct equations     (A1)

eg\(\;\;\;g(5) – g(4) = 0.21,{\text{ }}g(2) – g(4) = 0.66\)

combining equations to eliminate \(g(4)\)   (M1)

eg\(\;\;\;g(5) – [\ln 3 – 0.66] = 0.21\)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

METHOD 3

attempt to set up a definite integral     (M1)

eg\(\;\;\;\int_2^5 {g'(x){\text{d}}x =  – 0.66 + 0.21,{\text{ }}\int_2^5 {g'(x){\text{d}}x =  – 0.45} } \)

correct working     (A1)

eg\(\;\;\;g(5) – g(2) =  – 0.45\)

correct substitution     (A1)

eg\(\;\;\;g(5) – \ln 3 =  – 0.45\)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

[4 marks]

Total [16 marks]

e.

Question

Let \(f(x) = {x^2} + 2x + 1\) and \(g(x) = x – 5\), for \(x \in \mathbb{R}\).

Find \(f(8)\).

[2]
a.

Find \((g \circ f)(x)\).

[2]
b.

Solve \((g \circ f)(x) = 0\).

[3]
c.
Answer/Explanation

Markscheme

attempt to substitute \(x = 8\)     (M1)

eg\(\,\,\,\,\,\)\({8^2} + 2 \times 8 + 1\)

\(f(8) = 81\)    A1     N2

[2 marks]

a.

attempt to form composition (in any order)     (M1)

eg\(\,\,\,\,\,\)\(f(x – 5),{\text{ }}g\left( {f(x)} \right),{\text{ }}\left( {{x^2} + 2x + 1} \right) – 5\)

\((g \circ f)(x) = {x^2} + 2x – 4\)     A1     N2

[2 marks]

b.

valid approach     (M1)

eg     \(x = \frac{{ – 2 \pm \sqrt {20} }}{2}\), N16/5/MATME/SP2/ENG/TZ0/01.c/M

\(1.23606,{\text{ }} – 3.23606\)

\(x = 1.24,{\text{ }}x =  – 3.24\)     A1A1     N3

[3 marks]

c.

Question

Let \(f(x) = {x^2} – 1\) and \(g(x) = {x^2} – 2\), for \(x \in \mathbb{R}\).

Show that \((f \circ g)(x) = {x^4} – 4{x^2} + 3\).

[2]
a.

On the following grid, sketch the graph of \((f \circ g)(x)\), for \(0 \leqslant x \leqslant 2.25\).

M17/5/MATME/SP2/ENG/TZ2/06.b

[3]
b.

The equation \((f \circ g)(x) = k\) has exactly two solutions, for \(0 \leqslant x \leqslant 2.25\). Find the possible values of \(k\).

[3]
c.
Answer/Explanation

Markscheme

attempt to form composite in either order     (M1)

eg\(\,\,\,\,\,\)\(f({x^2} – 2),{\text{ }}{({x^2} – 1)^2} – 2\)

\(({x^4} – 4{x^2} + 4) – 1\)     A1

\((f \circ g)(x) = {x^4} – 4{x^2} + 3\)     AG     N0

[2 marks]

a.

M17/5/MATME/SP2/ENG/TZ2/06.b/M    A1

A1A1     N3

Note:     Award A1 for approximately correct shape which changes from concave down to concave up. Only if this A1 is awarded, award the following:

A1 for left hand endpoint in circle and right hand endpoint in oval,

A1 for minimum in oval.

[3 marks]

b.

evidence of identifying max/min as relevant points     (M1)

eg\(\,\,\,\,\,\)\(x = 0,{\text{ }}1.41421,{\text{ }}y =  – 1,{\text{ }}3\)

correct interval (inclusion/exclusion of endpoints must be correct)     A2     N3

eg\(\,\,\,\,\,\)\( – 1 < k \leqslant 3,{\text{ }}\left] { – 1,{\text{ 3}}} \right],{\text{ }}( – 1,{\text{ }}3]\)

[3 marks]

c.
Scroll to Top