IB DP Maths Topic 2.1 Identity function. Inverse function f−1 SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = 3x\) , \(g(x) = 2x – 5\) and \(h(x) = (f \circ g)(x)\) .

Find \(h(x)\) .

[2]
a.

Find \({h^{ – 1}}(x)\) .

[3]
b.
Answer/Explanation

Markscheme

attempt to form composite     (M1)

e.g. \(f(2x – 5)\)

\(h(x) = 6x – 15\)     A1     N2

[2 marks]

a.

interchanging x and y     (M1)

evidence of correct manipulation     (A1)

e.g. \(y + 15 = 6x\) , \(\frac{x}{6} = y – \frac{5}{2}\)

\({h^{ – 1}}(x) = \frac{{x + 15}}{6}\)     A1     N3

[3 marks]

b.

Question

Let \(f(x) = 2x + 4\) and \(g(x) = 7{x^2}\) .

Find \({f^{ – 1}}(x)\) .

[3]
a.

Find \((f \circ g)(x)\) .

[2]
b.

Find \((f \circ g)(3.5)\) .

[2]
c.
Answer/Explanation

Markscheme

interchanging x and y (may be seen at any time)     (M1)

evidence of correct manipulation     (A1)

e.g. \(x = 2y + 4\)

\({f^{ – 1}}(x) = \frac{{x – 4}}{2}\) (accept \(y = \frac{{x – 4}}{2},\frac{{x – 4}}{2}\) )     A1     N2

[3 marks]

a.

attempt to form composite (in any order)     (M1)

e.g. \(f(7{x^2}){\text{, }}2(7{x^2}) + 4{\text{, }}7{(2x + 4)^2}\)

\((f \circ g)(x) = 14{x^2} + 4\)     A1     N2

b.

correct substitution     (A1)

e.g. \(7 \times {3.5^2}\) , \(14{(3.5)^2} + 4\)

\((f \circ g)(3.5) = 175.5\) (accept 176)     A1     N2

[2 marks]

c.

Question

Let \(f(x) = \ln x\) and \(g(x) = 3 + \ln \left( {\frac{x}{2}} \right)\), for \(x > 0\).

The graph of \(g\) can be obtained from the graph of \(f\) by two transformations:

\[\begin{array}{*{20}{l}} {{\text{a horizontal stretch of scale factor }}q{\text{ followed by}}} \\ {{\text{a translation of }}\left( {\begin{array}{*{20}{c}} h \\ k \end{array}} \right).} \end{array}\]

Let \(h(x) = g(x) \times \cos (0.1x)\), for \(0 < x < 4\). The following diagram shows the graph of \(h\) and the line \(y = x\).

M17/5/MATME/SP2/ENG/TZ1/10.b.c

The graph of \(h\) intersects the graph of \({h^{ – 1}}\) at two points. These points have \(x\) coordinates 0.111 and 3.31 correct to three significant figures.

Write down the value of \(q\);

[1]
a.i.

Write down the value of \(h\);

[1]
a.ii.

Write down the value of \(k\).

[1]
a.iii.

Find \(\int_{0.111}^{3.31} {\left( {h(x) – x} \right){\text{d}}x} \).

[2]
b.i.

Hence, find the area of the region enclosed by the graphs of \(h\) and \({h^{ – 1}}\).

[3]
b.ii.

Let \(d\) be the vertical distance from a point on the graph of \(h\) to the line \(y = x\). There is a point \({\text{P}}(a,{\text{ }}b)\) on the graph of \(h\) where \(d\) is a maximum.

Find the coordinates of P, where \(0.111 < a < 3.31\).

[7]
c.
Answer/Explanation

Markscheme

\(q = 2\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.i.

\(h = 0\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.ii.

\(k = 3\)     A1     N1

Note:     Accept \(q = 1\), \(h = 0\), and \(k = 3 – \ln (2)\), 2.31 as candidate may have rewritten \(g(x)\) as equal to \(3 + \ln (x) – \ln (2)\).

[1 mark]

a.iii.

2.72409

2.72     A2     N2

[2 marks]

b.i.

recognizing area between \(y = x\) and \(h\) equals 2.72     (M1)

eg\(\,\,\,\,\,\)M17/5/MATME/SP2/ENG/TZ1/10.b.ii/M

recognizing graphs of \(h\) and \({h^{ – 1}}\) are reflections of each other in \(y = x\)     (M1)

eg\(\,\,\,\,\,\)area between \(y = x\) and \(h\) equals between \(y = x\) and \({h^{ – 1}}\)

\(2 \times 2.72\int_{0.111}^{3.31} {\left( {x – {h^{ – 1}}(x)} \right){\text{d}}x = 2.72} \)

5.44819

5.45     A1     N3

[??? marks]

b.ii.

valid attempt to find \(d\)     (M1)

eg\(\,\,\,\,\,\)difference in \(y\)-coordinates, \(d = h(x) – x\)

correct expression for \(d\)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\ln \frac{1}{2}x + 3} \right)(\cos 0.1x) – x\)

valid approach to find when \(d\) is a maximum     (M1)

eg\(\,\,\,\,\,\)max on sketch of \(d\), attempt to solve \(d’ = 0\)

0.973679

\(x = 0.974\)     A2     N4 

substituting their \(x\) value into \(h(x)\)     (M1)

2.26938

\(y = 2.27\)     A1     N2

[7 marks]

c.

Question

Let \(h(x) = \frac{{2x – 1}}{{x + 1}}\) , \(x \ne – 1\) .

Find \({h^{ – 1}}(x)\) .

[4]
a.

(i)     Sketch the graph of h for \( – 4 \le x \le 4\) and \( – 5 \le y \le 8\) , including any asymptotes.

(ii)    Write down the equations of the asymptotes.

(iii)   Write down the x-intercept of the graph of h .

[7]
b(i), (ii) and (iii).

Let R be the region in the first quadrant enclosed by the graph of h , the x-axis and the line \(x = 3\).

(i)     Find the area of R.

(ii)    Write down an expression for the volume obtained when R is revolved through \({360^ \circ }\) about the x-axis.

[5]
c(i) and (ii).
Answer/Explanation

Markscheme

\(y = \frac{{2x – 1}}{{x + 1}}\)

interchanging x and y (seen anywhere)     M1

e.g. \(x = \frac{{2y – 1}}{{y + 1}}\)

correct working     A1

e.g. \(xy + x = 2y – 1\)

collecting terms     A1

e.g. \(x + 1 = 2y – xy\) , \(x + 1 = y(2 – x)\)

\({h^{ – 1}}(x) = \frac{{x + 1}}{{2 – x}}\)     A1     N2

[4 marks]

a.


     A1A1A1A1     N4

Note: Award A1 for approximately correct intercepts, A1 for correct shape, A1 for asymptotes, A1 for approximately correct domain and range.

(ii) \(x = – 1\) , \(y = 2\)     A1A1     N2

(iii) \(\frac{1}{2}\)     A1     N1

[7 marks]

b(i), (ii) and (iii).

(i) \({\text{area}} = 2.06\)     A2     N2

(ii) attempt to substitute into volume formula (do not accept \(\pi \int_a^b {{y^2}{\rm{d}}x} \) )     M1

volume \( = \pi {\int_{\frac{1}{2}}^3 {\left( {\frac{{2x – 1}}{{x + 1}}} \right)} ^2}{\rm{d}}x\)     A2     N3

[5 marks]

c(i) and (ii).
Scroll to Top