IB DP Maths Topic 2.2 Investigation of key features of graphs, such as maximum and minimum values SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = {{\rm{e}}^x}(1 – {x^2})\) .

Part of the graph of \(y = f(x)\), for \( – 6 \le x \le 2\) , is shown below. The x-coordinates of the local minimum and maximum points are r and s respectively.


Show that \(f'(x) = {{\rm{e}}^x}(1 – 2x – {x^2})\) . 

[3]
a.

Write down the equation of the horizontal asymptote.

[1]
b.

Write down the value of r and of s.

[4]
c.

Let L be the normal to the curve of f at \({\text{P}}(0{\text{, }}1)\) . Show that L has equation \(x + y = 1\) .

[4]
d.

Let R be the region enclosed by the curve \(y = f(x)\) and the line L.

(i)     Find an expression for the area of R.

(ii)    Calculate the area of R.

[5]
e(i) and (ii).
Answer/Explanation

Markscheme

evidence of using the product rule     M1

\(f'(x) = {{\rm{e}}^x}(1 – {x^2}) + {{\rm{e}}^x}( – 2x)\)     A1A1

Note: Award A1 for \({{\rm{e}}^x}(1 – {x^2})\) , A1 for \({{\rm{e}}^x}( – 2x)\) .

\(f'(x) = {{\rm{e}}^x}(1 – 2x – {x^2})\)     AG     N0

[3 marks]

a.

\(y = 0\)     A1     N1

[1 mark]

b.

at the local maximum or minimum point

\(f'(x) = 0\) \(({{\rm{e}}^x}(1 – 2x – {x^2}) = 0)\)     (M1)

\( \Rightarrow 1 – 2x – {x^2} = 0\)     (M1)

\(r = – 2.41\) \(s = 0.414\)     A1A1     N2N2

[4 marks]

c.

\(f'(0) = 1\)     A1

gradient of the normal \(= – 1\)     A1

evidence of substituting into an equation for a straight line     (M1)

correct substitution     A1

e.g. \(y – 1 = – 1(x – 0)\) , \(y – 1 = – x\) , \(y = – x + 1\)

\(x + y = 1\)     AG     N0

[4 marks]

d.

(i) intersection points at \(x = 0\) and \(x = 1\) (may be seen as the limits)     (A1)

approach involving subtraction and integrals     (M1)

fully correct expression     A2     N4

e.g. \(\int_0^1 {\left( {{{\rm{e}}^x}(1 – {x^2}) – (1 – x)} \right)} {\rm{d}}x\) , \(\int_0^1 {f(x){\rm{d}}x – \int_0^1 {(1 – x){\rm{d}}x} } \)

(ii) area \(R = 0.5\)     A1     N1

[5 marks]

e(i) and (ii).

Question

Let \(f(x) = x\cos (x – \sin x)\) , \(0 \le x \le 3\) .

Sketch the graph of f on the following set of axes.

[3]
a.

The graph of f intersects the x-axis when \(x = a\) , \(a \ne 0\) . Write down the value of a.

[1]
b.

The graph of f is revolved \(360^\circ \) about the x-axis from \(x = 0\) to  \(x = a\) . Find the volume of the solid formed.

[4]
c.
Answer/Explanation

Markscheme

     A1A2     N3

Notes: Award A1 for correct domain, \(0 \le x \le 3\) . Award A2 for approximately correct shape, with local maximum in circle 1 and right endpoint in circle 2.

[3 marks] 

a.

\(a = 2.31\)    A1    N1

[1 mark]

b.

evidence of using \(V = \pi {\int {\left[ {f(x)} \right]} ^2}{\rm{d}}x\)     (M1)

fully correct integral expression      A2

e.g. \(V = \pi {\int_0^{2.31} {\left[ {x\cos (x – \sin x)} \right]} ^2}{\rm{d}}x\) , \(V = \pi {\int_0^{2.31} {\left[ {f(x)} \right]} ^2}{\rm{d}}x\)     A1     N2

\(V = 5.90\)

[4 marks]

c.

Question

Let \(f(x) = 3\sin x + 4\cos x\) , for \( – 2\pi  \le x \le 2\pi \) .

Sketch the graph of f .

[3]
a.

Write down

(i)     the amplitude;

(ii)    the period;

(iii)   the x-intercept that lies between \( – \frac{\pi }{2}\) and 0.

[3]
b.

Hence write \(f(x)\) in the form \(p\sin (qx + r)\) .

[3]
c.

Write down one value of x such that \(f'(x) = 0\) .

[2]
d.

Write down the two values of k for which the equation \(f(x) = k\) has exactly two solutions.

[2]
e.

Let \(g(x) = \ln (x + 1)\) , for \(0 \le x \le \pi \) . There is a value of x, between \(0\) and \(1\), for which the gradient of f is equal to the gradient of g. Find this value of x.

[5]
f.
Answer/Explanation

Markscheme


     A1A1A1     N3

Note: Award A1 for approximately sinusoidal shape, A1 for end points approximately correct \(( – 2\pi {\text{, }}4)\) \((2\pi {\text{, }}4)\), A1 for approximately correct position of graph, (y-intercept \((0{\text{, }}4)\), maximum to right of y-axis).

[3 marks]

a.

(i) 5     A1     N1

(ii) \(2\pi \)  (6.28)     A1     N1

(iii) \( – 0.927\)     A1     N1

[3 marks]

b.

\(f(x) = 5\sin (x + 0.927)\) (accept \(p = 5\) , \(q = 1\) , \(r = 0.927\) )     A1A1A1     N3

[3 marks]

c.

evidence of correct approach     (M1)

e.g. max/min, sketch of \(f'(x)\) indicating roots


one 3 s.f. value which rounds to one of \( – 5.6\), \( – 2.5\), \(0.64\), \(3.8\)     A1     N2

[2 marks]

d.

\(k = – 5\) , \(k = 5\)     A1A1     N2

[2 marks]

e.

METHOD 1

graphical approach (but must involve derivative functions)     M1

e.g.


each curve     A1A1

\(x = 0.511\)     A2     N2

METHOD 2

\(g'(x) = \frac{1}{{x + 1}}\)     A1

\(f'(x) = 3\cos x – 4\sin x\)     \((5\cos (x + 0.927))\)     A1

evidence of attempt to solve \(g'(x) = f'(x)\)     M1

\(x = 0.511\)     A2     N2

[5 marks]

f.

Question

Let \(f(x) = {{\rm{e}}^x}\sin 2x + 10\) , for \(0 \le x \le 4\) . Part of the graph of f is given below.


There is an x-intercept at the point A, a local maximum point at M, where \(x = p\) and a local minimum point at N, where \(x = q\) .

Write down the x-coordinate of A.

[1]
a.

Find the value of

(i)     p ;

(ii)    q .

[2]
b(i) and (ii).

Find \(\int_p^q {f(x){\rm{d}}x} \) . Explain why this is not the area of the shaded region.

[3]
c.
Answer/Explanation

Markscheme

\(2.31\)     A1     N1

[1 mark]

a.

(i) 1.02     A1     N1

(ii) 2.59     A1     N1

[2 marks]

b(i) and (ii).

\(\int_p^q {f(x){\rm{d}}x} = 9.96\)     A1     N1

split into two regions, make the area below the x-axis positive     R1R1     N2

[3 marks]

c.

Question

Consider \(f(x) = x\ln (4 – {x^2})\) , for \( – 2 < x < 2\) . The graph of f is given below.


Let P and Q be points on the curve of f where the tangent to the graph of f is parallel to the x-axis.

(i)     Find the x-coordinate of P and of Q.

(ii)    Consider \(f(x) = k\) . Write down all values of k for which there are exactly two solutions.

[5]
a(i) and (ii).

Let \(g(x) = {x^3}\ln (4 – {x^2})\) , for \( – 2 < x < 2\) .

Show that \(g'(x) = \frac{{ – 2{x^4}}}{{4 – {x^2}}} + 3{x^2}\ln (4 – {x^2})\) .

[4]
b.

Let \(g(x) = {x^3}\ln (4 – {x^2})\) , for \( – 2 < x < 2\) .

Sketch the graph of \(g’\) .

[2]
c.

Let \(g(x) = {x^3}\ln (4 – {x^2})\) , for \( – 2 < x < 2\) .

Consider \(g'(x) = w\) . Write down all values of w for which there are exactly two solutions.

[3]
d.
Answer/Explanation

Markscheme

(i) \( – 1.15{\text{, }}1.15\)     A1A1     N2

(ii) recognizing that it occurs at P and Q     (M1)

e.g. \(x = – 1.15\) , \(x = 1.15\)

\(k = – 1.13\) , \(k = 1.13\)     A1A1     N3

[5 marks]

a(i) and (ii).

evidence of choosing the product rule     (M1)

e.g. \(uv’ + vu’\)

derivative of \({x^3}\) is \(3{x^2}\)     (A1)

derivative of \(\ln (4 – {x^2})\) is \(\frac{{ – 2x}}{{4 – {x^2}}}\)     (A1)

correct substitution     A1

e.g. \({x^3} \times \frac{{ – 2x}}{{4 – {x^2}}} + \ln (4 – {x^2}) \times 3{x^2}\)

\(g'(x) = \frac{{ – 2{x^4}}}{{4 – {x^2}}} + 3{x^2}\ln (4 – {x^2})\)     AG     N0

[4 marks]

b.


     A1A1     N2

[2 marks]

c.

\(w = 2.69\) , \(w < 0\)     A1A2     N2

[3 marks]

d.

Question

Let \(f'(x) = – 24{x^3} + 9{x^2} + 3x + 1\) .

There are two points of inflexion on the graph of f . Write down the x-coordinates of these points.

[3]
a.

Let \(g(x) = f”(x)\) . Explain why the graph of g has no points of inflexion.

[2]
b.
Answer/Explanation

Markscheme

valid approach     R1

e.g. \(f”(x) = 0\) , the max and min of \(f’\) gives the points of inflexion on f

\( – 0.114{\text{, }}0.364\) (accept (\( – 0.114{\text{, }}0.811\)) and (\(0.364{\text{, }}2.13)\))     A1A1     N1N1

[3 marks]

a.

METHOD 1

graph of g is a quadratic function     R1     N1

a quadratic function does not have any points of inflexion     R1     N1

METHOD 2

graph of g is concave down over entire domain     R1     N1

therefore no change in concavity     R1     N1

METHOD 3

\(g”(x) = – 144\)    R1 N1

therefore no points of inflexion as \(g”(x) \ne 0\)     R1     N1

[2 marks]

b.

Question

Let \(f(x) = x\ln (4 – {x^2})\) , for \( – 2 < x < 2\) . The graph of f is shown below.


The graph of f crosses the x-axis at \(x = a\) , \(x = 0\) and \(x = b\) .

Find the value of a and of b .

[3]
a.

The graph of f has a maximum value when \(x = c\) .

Find the value of c .

[2]
b.

The region under the graph of f from \(x = 0\) to \(x = c\) is rotated \({360^ \circ }\) about the x-axis. Find the volume of the solid formed.

[3]
c.

Let R be the region enclosed by the curve, the x-axis and the line \(x = c\) , between \(x = a\) and \(x = c\) .

Find the area of R .

[4]
d.
Answer/Explanation

Markscheme

evidence of valid approach     (M1)

e.g. \(f(x) = 0\) , graph

\(a = – 1.73\) , \(b = 1.73\) \((a = – \sqrt 3 {\text{, }}b = \sqrt 3 )\)     A1A1     N3

[3 marks]

a.

attempt to find max     (M1)

e.g. setting \(f'(x) = 0\) , graph

\(c = 1.15\) (accept (1.15, 1.13))     A1     N2

[2 marks]

b.

attempt to substitute either limits or the function into formula     M1

e.g. \(V = \pi {\int_0^c {\left[ {f(x)} \right]} ^2}{\rm{d}}x\) , \(\pi {\int {\left[ {x\ln (4 – {x^2})} \right]} ^2}\) , \(\pi \int_0^{1.149 \ldots } {{y^2}{\rm{d}}x} \)

\(V = 2.16\)    A2     N2

[3 marks]

c.

valid approach recognizing 2 regions     (M1)

e.g. finding 2 areas

correct working     (A1)

e.g. \(\int_0^{ – 1.73 \ldots } {f(x){\rm{d}}x + } \int_0^{1.149 \ldots } {f(x){\rm{d}}x} \) , \( – \int_{ – 1.73 \ldots }^0 {f(x){\rm{d}}x + } \int_0^{1.149 \ldots } {f(x){\rm{d}}x} \)

area \( = 2.07\) (accept 2.06)     A2     N3

[4 marks]

d.

Question

Let \(f(x) = a{x^3} + b{x^2} + c\) , where a , b and c are real numbers. The graph of f passes through the point (2, 9) .

Show that \(8a + 4b + c = 9\) .

[2]
a.

The graph of f has a local minimum at \((1{\text{, }}4)\) .

Find two other equations in a , b and c , giving your answers in a similar form to part (a).

[7]
b.

Find the value of a , of b and of c .

[4]
c.
Answer/Explanation

Markscheme

attempt to substitute coordinates in f     (M1)

e.g. \(f(2) = 9\)

correct substitution     A1

e.g. \(a \times {2^3} + b \times {2^2} + c = 9\)

\(8a + 4b + c = 9\)    AG     N0

[2 marks]

a.

recognizing that \((1{\text{, }}4)\) is on the graph of f     (M1)

e.g. \(f(1) = 4\)

correct equation     A1

e.g. \(a + b + c = 4\)

recognizing that \(f’ = 0\) at minimum (seen anywhere)     (M1)

e.g. \(f'(1) = 0\)

\(f'(x) = 3a{x^2} + 2bx\) (seen anywhere)     A1A1

correct substitution into derivative     (A1)

e.g. \(3a \times {1^2} + 2b \times 1 = 0\)

correct simplified equation     A1

e.g. \(3a + 2b = 0\)

[7 marks]

b.

valid method for solving system of equations     (M1)

e.g. inverse of a matrix, substitution

\(a = 2\) , \(b = – 3\) , \(c = 5\)     A1A1A1     N4

[4 marks]

c.

Question

Let \(f(x) = {x^3} – 2x – 4\) . The following diagram shows part of the curve of f .


The curve crosses the x-axis at the point P.

Write down the x-coordinate of P.

[1]
a.

Write down the gradient of the curve at P.

[2]
b.

Find the equation of the normal to the curve at P, giving your equation in the form \(y = ax + b\) .

[3]
c.
Answer/Explanation

Markscheme

\(x = 2\) (accept \((2{\text{, }}0)\))    A1     N1

[1 mark]

a.

evidence of finding gradient of f at \(x = 2\)     (M1) 

e.g. \(f'(2)\)

the gradient is 10     A1     N2

[2 marks]

b.

evidence of negative reciprocal of gradient     (M1)

e.g. \(\frac{{ – 1}}{{f'(x)}}\) , \( – \frac{1}{{10}}\) 

evidence of correct substitution into equation of a line     (A1)

e.g. \(y – 0 = \frac{{ – 1}}{{10}}(x – 2)\) , \(0 = – 0.1(2) + b\)

\(y = – \frac{1}{{10}}x + \frac{2}{{10}}\) (accept \(a = – 0.1\) , \(b = 0.2\) )     A1     N2

[3 marks]

c.

Question

Let \(f(x) = a\cos (b(x – c))\) . The diagram below shows part of the graph of f , for \(0 \le x \le 10\) .


The graph has a local maximum at P(3, 5) , a local minimum at Q(7, − 5) , and crosses the x-axis at R.

 

Write down the value of

(i)     \(a\) ;

(ii)    \(c\) .

[2]
a(i) and (ii).

Find the value of b .

[2]
b.

Find the x-coordinate of R.

[2]
c.
Answer/Explanation

Markscheme

(i) \(a = 5\)  (accept \( – 5\) )     A1     N1

(ii) \(c = 3\)  (accept \(c = 7\) , if \(a = – 5\) )     A1     N1

Note: Accept other correct values of c, such as 11, \( – 5\), etc.

[2 marks]

a(i) and (ii).

attempt to find period     (M1)

e.g. 8 , \(b = \frac{{2\pi }}{{{\rm{period}}}}\)

\(0.785398 \ldots \)

\(b = \frac{{2\pi }}{8}\)  (exact), \(\frac{\pi }{4}\) , 0.785 [\(0.785{\text{, }}0.786\)] (do not accept 45)     A1     N2

[2 marks]

b.

valid approach     (M1)

e.g. \(f(x) = 0\) , symmetry of curve

\(x = 5\) (accept \((5{\text{ ,}}0))\)    A1     N2

[2 marks]

c.

Question

The velocity of a particle in ms−1 is given by \(v = {{\rm{e}}^{\sin t}} – 1\) , for \(0 \le t \le 5\) .

On the grid below, sketch the graph of \(v\) .


[3]
a.

Find the total distance travelled by the particle in the first five seconds.

[1]
b.i.

Write down the positive \(t\)-intercept.

[4]
b.ii.
Answer/Explanation

Markscheme

     A1A1A1     N3

Note: Award A1 for approximately correct shape crossing x-axis with \(3 < x < 3.5\) .

  Only if this A1 is awarded, award the following:

  A1 for maximum in circle, A1 for endpoints in circle.

[3 marks]

a.

\(t = \pi \) (exact), \(3.14\)     A1     N1

[1 mark]

b.i.

recognizing distance is area under velocity curve     (M1)

eg   \(s = \int v \) , shading on diagram, attempt to integrate

valid approach to find the total area     (M1)

eg   \({\text{area A}} + {\text{area B}}\) , \(\int {v{\rm{d}}t – \int {v{\rm{d}}t} } \) , \(\int_0^{3.14} {v{\rm{d}}t + } \int_{3.14}^5 {v{\rm{d}}t} \) , \(\int {\left| v \right|} \)

correct working with integration and limits (accept \({\rm{d}}x\) or missing \({\rm{d}}t\) )     (A1)

eg   \(\int_0^{3.14} {v{\rm{d}}t + } \int_5^{3.14} {v{\rm{d}}t} \) , \(3.067 \ldots  + 0.878 \ldots \) , \(\int_0^5 {\left| {{{\rm{e}}^{\sin t}} – 1} \right|} \)

distance \( = 3.95\) (m)     A1     N3

[4 marks]

b.ii.

Question

Let \(f(x) = 5 – {x^2}\). Part of the graph of \(f\)is shown in the following diagram.

The graph crosses the \(x\)-axis at the points \(\rm{A}\) and \(\rm{B}\).

Find the \(x\)-coordinate of \({\text{A}}\) and of \({\text{B}}\).

[3]
a.

The region enclosed by the graph of \(f\) and the \(x\)-axis is revolved \(360^\circ \) about the \(x\)-axis.

Find the volume of the solid formed.

[3]
b.
Answer/Explanation

Markscheme

recognizing \(f(x) = 0\)     (M1)

eg     \(f = 0,{\text{ }}{x^2} = 5\)

\(x =  \pm 2.23606\)

\(x =  \pm \sqrt 5 {\text{ (exact), }}x =  \pm 2.24\)     A1A1     N3

[3 marks]

a.

attempt to substitute either limits or the function into formula

involving \({f^2}\)     (M1)

eg     \(\pi \int {{{\left( {5 – {x^2}} \right)}^2}{\text{d}}x,{\text{ }}\pi \int_{ – 2.24}^{2.24} {\left( {{x^4} – 10{x^2} + 25} \right)} ,{\text{ }}2\pi \int_0^{\sqrt 5 } {{f^2}} } \)

\(187.328\)

volume \(= 187\)     A2     N3

[3 marks]

b.

Question

Let \(f(x) = \frac{{2x – 6}}{{1 – x}}\), for \(x \ne 1\).

For the graph of \(f\)

(i)     find the \(x\)-intercept;

(ii)     write down the equation of the vertical asymptote;

(iii)     find the equation of the horizontal asymptote.

[5]
a.

Find \(\mathop {\lim }\limits_{x \to \infty } f(x)\).

[2]
b.
Answer/Explanation

Markscheme

(i)     valid approach     (M1)

eg\(\;\;\;\)sketch, \(f(x) = 0,{\text{ }}0 = 2x – 6\)

\(x = 3\) or \((3,{\text{ }}0)\)     A1     N2

(ii)     \(x = 1\;\;\;\)(must be equation)     A1     N1

(iii)     valid approach     (M1)

eg\(\;\;\;\)sketch, \(\frac{{2x}}{{ – 1x}}\), inputting large values of \(x\), L’Hopital’s rule

\(y =  – 2\;\;\;\)(must be equation)     A1     N2

[5 marks]

a.

valid approach     (M1)

eg\(\;\;\;\)recognizing that \(\mathop {\lim }\limits_{x \to \infty } \) is related to the horizontal asymptote, table with large values of \(x\), their \(y\) value from (a)(iii), L’Hopital’s rule

\(\mathop {\lim }\limits_{x \to \infty } f(x) =  – 2\)     A1     N2

[2 marks]

Total [7 marks]

b.

Question

The following diagram shows part of the graph of \(f(x) =  – 2{x^3} + 5.1{x^2} + 3.6x – 0.4\).

Find the coordinates of the local minimum point.

[2]
a.

The graph of \(f\) is translated to the graph of \(g\) by the vector \(\left( {\begin{array}{*{20}{c}} 0 \\ k \end{array}} \right)\). Find all values of \(k\) so that \(g(x) = 0\) has exactly one solution.

[5]
b.
Answer/Explanation

Markscheme

\(( – 0.3,{\text{ }} – 0.967)\)

\(x =  – 0.3\) (exact), \(y =  – 0.967\) (exact)     A1A1     N2

[2 marks]

a.

\(y\)-coordinate of local maximum is \(y = 11.2\)     (A1)

negating the \(y\)-coordinate of one of the max/min     (M1)

eg\(\;\;\;y = 0.967,{\text{ }}y =  – 11.2\)

recognizing that the solution set has two intervals     R1

eg\(\;\;\;\)two answers,

\(k <  – 11.2,{\text{ }}k > 0.967\)     A1A1     N3N2

[5 marks]

Notes:     If working shown, do not award the final mark if strict inequalities are not used.

If no working shown, award N2 for \(k \le  – 11.2\) or N1 for \(k \ge 0.967\)

Total [7 marks]

b.

Question

Consider a function \(f\), for \(0 \le x \le 10\). The following diagram shows the graph of \(f’\), the derivative of \(f\).

The graph of \(f’\) passes through \((2,{\text{ }} – 2)\) and \((5,{\text{ }}1)\), and has \(x\)-intercepts at \(0\), \(4\) and \(6\).

The graph of \(f\) has a local maximum point when \(x = p\). State the value of \(p\), and justify your answer.

[3]
a.

Write down \(f'(2)\).

[1]
b.

Let \(g(x) = \ln \left( {f(x)} \right)\) and \(f(2) = 3\).

Find \(g'(2)\).

[4]
c.

Verify that \(\ln 3 + \int_2^a {g'(x){\text{d}}x = g(a)} \), where \(0 \le a \le 10\).

[4]
d.

The following diagram shows the graph of \(g’\), the derivative of \(g\).

The shaded region \(A\) is enclosed by the curve, the \(x\)-axis and the line \(x = 2\), and has area \({\text{0.66 unit}}{{\text{s}}^{\text{2}}}\).

The shaded region \(B\) is enclosed by the curve, the \(x\)-axis and the line \(x = 5\), and has area \({\text{0.21 unit}}{{\text{s}}^{\text{2}}}\).

Find \(g(5)\).

[4]
e.
Answer/Explanation

Markscheme

\(p = 6\)     A1     N1

recognizing that turning points occur when \(f'(x) = 0\)     R1     N1

eg\(\;\;\;\)correct sign diagram

\(f’\) changes from positive to negative at \(x = 6\)     R1     N1

[3 marks]

a.

\(f'(2) =  – 2\)     A1     N1

[1 mark]

b.

attempt to apply chain rule     (M1)

eg\(\;\;\;\ln (x)’ \times f'(x)\)

correct expression for \(g'(x)\)     (A1)

eg\(\;\;\;g'(x) = \frac{1}{{f(x)}} \times f'(x)\)

substituting \(x = 2\) into their \(g’\)     (M1)

eg\(\;\;\;\frac{{f'(2)}}{{f(2)}}\)

\( – 0.666667\)

\(g'(2) =  – \frac{2}{3}{\text{ (exact), }} – 0.667\)     A1     N3

[4 marks]

c.

evidence of integrating \(g'(x)\)     (M1)

eg\(\;\;\;g(x)|_2^a,{\text{ }}g(x)|_a^2\)

applying the fundamental theorem of calculus (seen anywhere)     R1

eg\(\;\;\;\int_2^a {g'(x) = g(a) – g(2)} \)

correct substitution into integral     (A1)

eg\(\;\;\;\ln 3 + g(a) – g(2),{\text{ }}\ln 3 + g(a) – \ln \left( {f(2)} \right)\)

\(\ln 3 + g(a) – \ln 3\)     A1

\(\ln 3 + \int_2^a {g'(x) = g(a)} \)     AG     N0

[4 marks]

d.

METHOD 1

substituting \(a = 5\) into the formula for \(g(a)\)     (M1)

eg\(\;\;\;\int_2^5 {g'(x){\text{d}}x,{\text{ }}g(5) = \ln 3 + \int_2^5 {g'(x){\text{d}}x\;\;\;} } \left( {{\text{do not accept only }}g(5)} \right)\)

attempt to substitute areas     (M1)

eg\(\;\;\;\ln 3 + 0.66 – 0.21,{\text{ }}\ln 3 + 0.66 + 0.21\)

correct working

eg\(\;\;\;g(5) = \ln 3 + ( – 0.66 + 0.21)\)     (A1)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

METHOD 2

attempt to set up an equation for one shaded region     (M1)

eg\(\;\;\;\int_4^5 {g'(x){\text{d}}x = 0.21,{\text{ }}\int_2^4 {g'(x){\text{d}}x =  – 0.66,{\text{ }}\int_2^5 {g'(x){\text{d}}x =  – 0.45} } } \)

two correct equations     (A1)

eg\(\;\;\;g(5) – g(4) = 0.21,{\text{ }}g(2) – g(4) = 0.66\)

combining equations to eliminate \(g(4)\)   (M1)

eg\(\;\;\;g(5) – [\ln 3 – 0.66] = 0.21\)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

METHOD 3

attempt to set up a definite integral     (M1)

eg\(\;\;\;\int_2^5 {g'(x){\text{d}}x =  – 0.66 + 0.21,{\text{ }}\int_2^5 {g'(x){\text{d}}x =  – 0.45} } \)

correct working     (A1)

eg\(\;\;\;g(5) – g(2) =  – 0.45\)

correct substitution     (A1)

eg\(\;\;\;g(5) – \ln 3 =  – 0.45\)

\(0.648612\)

\(g(5) = \ln 3 – 0.45{\text{ (exact), }}0.649\)     A1     N3

[4 marks]

Total [16 marks]

e.

Question

Let \(f(x) = k{x^2} + kx\) and \(g(x) = x – 0.8\). The graphs of \(f\) and \(g\) intersect at two distinct points.

Find the possible values of \(k\).

Answer/Explanation

Markscheme

attempt to set up equation     (M1)

eg\(\;\;\;f = g,{\text{ }}k{x^2} + kx = x – 0.8\)

rearranging their equation to equal zero     M1

eg\(\;\;\;k{x^2} + kx – x + 0.8 = 0,{\text{ }}k{x^2} + x(k – 1) + 0.8 = 0\)

evidence of discriminant (if seen explicitly, not just in quadratic formula)     (M1)

eg\(\;\;\;{b^2} – 4ac,{\text{ }}\Delta  = {(k – 1)^2} – 4k \times 0.8,{\text{ }}D = 0\)

correct discriminant     (A1)

eg\(\;\;\;{(k – 1)^2} – 4k \times 0.8,{\text{ }}{k^2} – 5.2k + 1\)

evidence of correct discriminant greater than zero     R1

eg\(\;\;\;{k^2} – 5.2k + 1 > 0,{\text{ }}{(k – 1)^2} – 4k \times 0.8 > 0\), correct answer

both correct values     (A1)

eg\(\;\;\;0.2,{\text{ }}5\)

correct answer     A2     N3

eg\(\;\;\;k < 0.2,{\text{ }}k \ne 0,{\text{ }}k > 5\)

[8 marks]

Question

Let \(f(x) = 2\ln (x – 3)\), for \(x > 3\). The following diagram shows part of the graph of \(f\).

Find the equation of the vertical asymptote to the graph of \(f\).

[2]
a.

Find the \(x\)-intercept of the graph of \(f\).

[2]
b.

The region enclosed by the graph of \(f\), the \(x\)-axis and the line \(x = 10\) is rotated \(360\)° about the \(x\)-axis. Find the volume of the solid formed.

[3]
c.
Answer/Explanation

Markscheme

valid approach     (M1)

eg\(\;\;\;\)horizontal translation \(3\) units to the right

\(x = 3\) (must be an equation)     A1     N2

[2 marks]

a.

valid approach     (M1)

eg\(\;\;\;f(x) = 0,{\text{ }}{e^0} = x – 3\)

\(4,{\text{ }}x = 4,{\text{ }}(4,{\text{ }}0)\)     A1     N2

[2 marks]

b.

attempt to substitute either their correct limits or the function into formula involving \({f^2}\)      (M1)

eg\(\;\;\;\int_4^{10} {{f^2},{\text{ }}\pi \int {{{\left( {2\ln (x – 3)} \right)}^2}{\text{d}}x} } \)

\(141.537\)

volume = \(142\)     A2     N3

[3 marks]

Total [7 marks]

c.

Question

A particle P moves along a straight line so that its velocity, \(v\,{\text{m}}{{\text{s}}^{ – 1}}\), after \(t\) seconds, is given by \(v = \cos 3t – 2\sin t – 0.5\), for \(0 \leqslant t \leqslant 5\). The initial displacement of P from a fixed point O is 4 metres.

The following sketch shows the graph of \(v\).

M16/5/MATME/SP2/ENG/TZ1/09.b+c+d+e

Find the displacement of P from O after 5 seconds.

[5]
a.

Find when P is first at rest.

[2]
b.

Write down the number of times P changes direction.

[2]
c.

Find the acceleration of P after 3 seconds.

[2]
d.

Find the maximum speed of P.

[3]
e.
Answer/Explanation

Markscheme

METHOD 1

recognizing \(s = \int v \)     (M1)

recognizing displacement of P in first 5 seconds (seen anywhere)     A1

(accept missing \({\text{d}}t\))

eg\(\,\,\,\,\,\)\(\int_0^5 {v{\text{d}}t,{\text{ }} – 3.71591} \)

valid approach to find total displacement     (M1)

eg\(\,\,\,\,\,\)\(4 + ( – 3.7159),{\text{ }}s = 4 + \int_0^5 v \)

0.284086

0.284 (m)     A2     N3

METHOD 2

recognizing \(s = \int v \)     (M1)

correct integration     A1

eg\(\,\,\,\,\,\)\(\frac{1}{3}\sin 3t + 2\cos t – \frac{t}{2} + c\) (do not penalize missing “\(c\)”)

attempt to find \(c\)     (M1)

eg\(\,\,\,\,\,\)\(4 = \frac{1}{3}\sin (0) + 2\cos (0)–\frac{0}{2} + c,{\text{ }}4 = \frac{1}{3}\sin 3t + 2\cos t – \frac{t}{2} + c,{\text{ }}2 + c = 4\)

attempt to substitute \(t = 5\) into their expression with \(c\)     (M1)

eg\(\,\,\,\,\,\)\(s(5),{\text{ }}\frac{1}{3}\sin (15) + 2\cos (5)5–\frac{5}{2} + 2\)

0.284086

0.284 (m)     A1     N3

[5 marks]

a.

recognizing that at rest, \(v = 0\)     (M1)

\(t = 0.179900\)

\(t = 0.180{\text{ (secs)}}\)     A1     N2

[2 marks]

b.

recognizing when change of direction occurs     (M1)

eg\(\,\,\,\,\,\)\(v\) crosses \(t\) axis

2 (times)     A1     N2

[2 marks]

c.

acceleration is \({v’}\) (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)\(v'(3)\)

0.743631

\(0.744{\text{ }}({\text{m}}{{\text{s}}^{ – 2}})\)     A1     N2

[2 marks]

d.

valid approach involving max or min of \(v\)     (M1)

eg\(\,\,\,\,\,\)\(v\prime  = 0,{\text{ }}a = 0\), graph

one correct co-ordinate for min     (A1)

eg\(\,\,\,\,\,\)\(1.14102,{\text{ }}-3.27876\)

\(3.28{\text{ }}({\text{m}}{{\text{s}}^{ – 1}})\)     A1     N2

[3 marks]

e.

Question

Let \(f(x) = \frac{1}{{x – 1}} + 2\), for \(x > 1\).

Let \(g(x) = a{e^{ – x}} + b\), for \(x \geqslant 1\). The graphs of \(f\) and \(g\) have the same horizontal asymptote.

Write down the equation of the horizontal asymptote of the graph of \(f\).

[2]
a.

Find \(f'(x)\).

[2]
b.

Write down the value of \(b\).

[2]
c.

Given that \(g'(1) =  – e\), find the value of \(a\).

[4]
d.

There is a value of \(x\), for \(1 < x < 4\), for which the graphs of \(f\) and \(g\) have the same gradient. Find this gradient.

[4]
e.
Answer/Explanation

Markscheme

\(y = 2\) (correct equation only)     A2     N2

[2 marks]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\({(x – 1)^{ – 1}} + 2,{\text{ }}f'(x) = \frac{{0(x – 1) – 1}}{{{{(x – 1)}^2}}}\)

\( – {(x – 1)^{ – 2}},{\text{ }}f'(x) = \frac{{ – 1}}{{{{(x – 1)}^2}}}\)    A1     N2

[2 marks]

b.

correct equation for the asymptote of \(g\)

eg\(\,\,\,\,\,\)\(y = b\)     (A1)

\(b = 2\)     A1     N2

[2 marks]

c.

correct derivative of g (seen anywhere)     (A2)

eg\(\,\,\,\,\,\)\(g'(x) =  – a{{\text{e}}^{ – x}}\)

correct equation     (A1)

eg\(\,\,\,\,\,\)\( – {\text{e}} =  – a{{\text{e}}^{ – 1}}\)

7.38905

\(a = {{\text{e}}^2}{\text{ }}({\text{exact}}),{\text{ }}7.39\)     A1     N2

[4 marks]

d.

attempt to equate their derivatives     (M1)

eg\(\,\,\,\,\,\)\(f'(x) = g'(x),{\text{ }}\frac{{ – 1}}{{{{(x – 1)}^2}}} =  – a{{\text{e}}^{ – x}}\)

valid attempt to solve their equation     (M1)

eg\(\,\,\,\,\,\)correct value outside the domain of \(f\) such as 0.522 or 4.51,

M16/5/MATME/SP2/ENG/TZ2/09.e/M

correct solution (may be seen in sketch)     (A1)

eg\(\,\,\,\,\,\)\(x = 2,{\text{ }}(2,{\text{ }} – 1)\)

gradient is \( – 1\)     A1     N3

[4 marks]

e.

Question

Let \(f(x) = 0.225{x^3} – 2.7x\), for \( – 3 \leqslant x \leqslant 3\). There is a local minimum point at A.

On the following grid,

Find the coordinates of A.

[2]
a.

(i)     sketch the graph of \(f\), clearly indicating the point A;

(ii)    sketch the tangent to the graph of \(f\) at A.

N16/5/MATME/SP2/ENG/TZ0/02.b

[5]
b.
Answer/Explanation

Markscheme

\({\text{A }}(2,{\text{ }}-3.6)\)     A1A1     N2

[2 marks]

a.

(i) (ii)     N16/5/MATME/SP2/ENG/TZ0/02.b/M     A1

A1A1A1     N4

A1     N1

Notes: (i) Award A1 for correct cubic shape with correct curvature.

Only if this A1 is awarded, award the following:

A1 for passing through their point A and the origin,

A1 for endpoints,

A1 for maximum.

(ii) Award A1 for horizontal line through their A.

[5 marks]

b.

Question

Let \(f(x) =  – 0.5{x^4} + 3{x^2} + 2x\). The following diagram shows part of the graph of \(f\).

M17/5/MATME/SP2/ENG/TZ2/08

There are \(x\)-intercepts at \(x = 0\) and at \(x = p\). There is a maximum at A where \(x = a\), and a point of inflexion at B where \(x = b\).

Find the value of \(p\).

[2]
a.

Write down the coordinates of A.

[2]
b.i.

Write down the rate of change of \(f\) at A.

[1]
b.ii.

Find the coordinates of B.

[4]
c.i.

Find the the rate of change of \(f\) at B.

[3]
c.ii.

Let \(R\) be the region enclosed by the graph of \(f\) , the \(x\)-axis, the line \(x = b\) and the line \(x = a\). The region \(R\) is rotated 360° about the \(x\)-axis. Find the volume of the solid formed.

[3]
d.
Answer/Explanation

Markscheme

evidence of valid approach     (M1)

eg\(\,\,\,\,\,\)\(f(x) = 0,{\text{ }}y = 0\)

2.73205

\(p = 2.73\)     A1     N2

[2 marks]

a.

1.87938, 8.11721

\((1.88,{\text{ }}8.12)\)     A2     N2

[2 marks]

b.i.

rate of change is 0 (do not accept decimals)     A1     N1

[1 marks]

b.ii.

METHOD 1 (using GDC)

valid approach     M1

eg\(\,\,\,\,\,\)\(f’’ = 0\), max/min on \(f’,{\text{ }}x =  – 1\)

sketch of either \(f’\) or \(f’’\), with max/min or root (respectively)     (A1)

\(x = 1\)     A1     N1

Substituting their \(x\) value into \(f\)     (M1)

eg\(\,\,\,\,\,\)\(f(1)\)

\(y = 4.5\)     A1     N1

METHOD 2 (analytical)

\(f’’ =  – 6{x^2} + 6\)     A1

setting \(f’’ = 0\)     (M1)

\(x = 1\)     A1     N1

substituting their \(x\) value into \(f\)     (M1)

eg\(\,\,\,\,\,\)\(f(1)\)

\(y = 4.5\)     A1     N1

[4 marks]

c.i.

recognizing rate of change is \(f’\)     (M1)

eg\(\,\,\,\,\,\)\(y’,{\text{ }}f’(1)\)

rate of change is 6     A1     N2

[3 marks]

c.ii.

attempt to substitute either limits or the function into formula     (M1)

involving \({f^2}\) (accept absence of \(\pi \) and/or \({\text{d}}x\))

eg\(\,\,\,\,\,\)\(\pi \int {{{( – 0.5{x^4} + 3{x^2} + 2x)}^2}{\text{d}}x,{\text{ }}\int_1^{1.88} {{f^2}} } \)

128.890

\({\text{volume}} = 129\)     A2     N3

[3 marks]

d.

Question

Let \(f(x) = \frac{{6{x^2} – 4}}{{{{\text{e}}^x}}}\), for \(0 \leqslant x \leqslant 7\).

Find the \(x\)-intercept of the graph of \(f\).

[2]
a.

The graph of \(f\) has a maximum at the point A. Write down the coordinates of A.

[2]
b.

On the following grid, sketch the graph of \(f\).

N17/5/MATME/SP2/ENG/TZ0/02.c

[3]
c.
Answer/Explanation

Markscheme

valid approach     (M1)

eg\(\,\,\,\,\,\)\(f(x) = 0,{\text{ }} \pm 0.816\)

0.816496

\(x = \sqrt {\frac{2}{3}} \) (exact), 0.816     A1     N2

[2 marks]

a.

\((2.29099,{\text{ }}2.78124)\)

\({\text{A}}(2.29,{\text{ }}2.78)\)     A1A1     N2

[2 marks]

b.

N17/5/MATME/SP2/ENG/TZ0/02.c/M     A1A1A1     N3

Notes:     Award A1 for correct domain and endpoints at \(x = 0\) and \(x = 7\) in circles,

A1 for maximum in square,

A1 for approximately correct shape that passes through their \(x\)-intercept in circle and has changed from concave down to concave up between 2.29 and 7.

[3 marks]

c.

Question

Let g(x) = −(x − 1)2 + 5.

Let f(x) = x2. The following diagram shows part of the graph of f.

The graph of g intersects the graph of f at x = −1 and x = 2.

Write down the coordinates of the vertex of the graph of g.

[1]
a.

On the grid above, sketch the graph of g for −2 ≤ x ≤ 4.

[3]
b.

Find the area of the region enclosed by the graphs of f and g.

[3]
c.
Answer/Explanation

Markscheme

(1,5) (exact)      A1 N1

[1 mark]

a.

      A1A1A1  N3

Note: The shape must be a concave-down parabola.
Only if the shape is correct, award the following for points in circles:
A1 for vertex,
A1 for correct intersection points,
A1 for correct endpoints.

[3 marks]

b.

integrating and subtracting functions (in any order)      (M1)
eg  \(\int {f – g} \)

correct substitution of limits or functions (accept missing dx, but do not accept any errors, including extra bits)     (A1)
eg \(\int_{ – 1}^2 {g – f,\,\,\int { – {{\left( {x – 1} \right)}^2}} }  + 5 – {x^2}\)

area = 9  (exact)      A1 N2

[3 marks]

c.

Question

Let \(f\left( x \right) = \,\,{\text{sin}}\,\left( {{e^x}} \right)\) for 0 ≤ \(x\) ≤ 1.5. The following diagram shows the graph of \(f\).

Find the x-intercept of the graph of \(f\).

[2]
a.

The region enclosed by the graph of \(f\), the y-axis and the x-axis is rotated 360° about the x-axis.

Find the volume of the solid formed.

[3]
b.
Answer/Explanation

Markscheme

valid approach     (M1)
eg  \(f\left( x \right) = 0,\,\,\,\,{e^x} = 180\) or 0…

1.14472

\(x = {\text{ln}}\,\pi \)   (exact), 1.14      A1 N2

[2 marks]

a.

attempt to substitute either their limits or the function into formula involving \({f^2}\).     (M1)

eg  \({\int_0^{1.14} {{f^2},\,\,\pi \int {\left( {{\text{sin}}\,\left( {{e^x}} \right)} \right)} } ^2}dx,\,\,0.795135\)

2.49799

volume = 2.50      A2 N3

[3 marks]

b.

Question

Let \(f\left( x \right) = \frac{{8x – 5}}{{cx + 6}}\) for \(x \ne  – \frac{6}{c},\,\,c \ne 0\).

The line x = 3 is a vertical asymptote to the graph of f. Find the value of c.

[2]
a.

Write down the equation of the horizontal asymptote to the graph of f.

[2]
b.

The line y = k, where \(k \in \mathbb{R}\) intersects the graph of \(\left| {f\left( x \right)} \right|\) at exactly one point. Find the possible values of k.

[3]
c.
Answer/Explanation

Markscheme

valid approach       (M1)
eg  \(cx + 6 = 0,\,\, – \frac{6}{c} = 3\)

c = −2      A1 N2

[2 marks]

a.

valid approach (M1)
eg  \(\mathop {{\text{lim}}\,f}\limits_{x \to \infty } \left( x \right),\,\,y = \frac{8}{c}\)

y = −4 (must be an equation)      A1 N2

[2 marks]

b.

valid approach to analyze modulus function      (M1)
eg   sketch, horizontal asymptote at y = 4, y = 0

k = 4, k = 0     A2 N3

[3 marks]

c.

Question

Let \(f(x) = 4x – {{\rm{e}}^{x – 2}} – 3\) , for \(0 \le x \le 5\) .

Find the x-intercepts of the graph of f .

[3]
a.

On the grid below, sketch the graph of f .


[3]
b.

Write down the gradient of the graph of f at \(x = 3\) .

[1]
c.
Answer/Explanation

Markscheme

intercepts when \(f(x) = 0\)     M1

(0.827, 0) (4.78, 0) (accept \(x = 0.827\), \(x = 4.78\) )     A1A1     N3

[3 marks]

a.


     A1A1A1     N3

Note: Award A1 for maximum point in circle, A1 for x-intercepts in circles, A1 for correct shape (y approximately greater than \( – 3.14\)).

[3 marks]

b.

gradient is 1.28     A1     N1

[1 mark]

c.
Scroll to Top