IB DP Maths Topic 2.2 The graph of y=f−1(x) as the reflection in the line y=x of the graph of y=f(x) SL Paper 1

Question

The diagram below shows the graph of a function \(f\) , for \( – 1 \le x \le 2\) .


Write down the value of \(f(2)\).

[1]
a.i.

Write down the value of \({f^{ – 1}}( – 1)\) .

[2]
a.ii.

Sketch the graph of \({f^{ – 1}}\) on the grid below.


[3]
b.
Answer/Explanation

Markscheme

\(f(2) = 3\)     A1     N1

[1 mark]

a.i.

\({f^{ – 1}}( – 1) = 0\)     A2     N2

[2 marks]

a.ii.

EITHER

attempt to draw \(y = x\) on grid     (M1)

OR

attempt to reverse x and y coordinates     (M1)

eg   writing or plotting at least two of the points

\(( – 2, – 1)\) , \(( – 1,0)\) , \((0,1)\) , \((3,2)\)

THEN

correct graph     A2     N3


[3 marks]

b.

Question

Let \(f(x) = 3x – 2\) and \(g(x) = \frac{5}{{3x}}\), for \(x \ne 0\).

Let \(h(x) = \frac{5}{{x + 2}}\), for \(x \geqslant 0\). The graph of h has a horizontal asymptote at \(y = 0\).

Find \({f^{ – 1}}(x)\).

[2]
a.

Show that \(\left( {g \circ {f^{ – 1}}} \right)(x) = \frac{5}{{x + 2}}\).

[2]
b.

Find the \(y\)-intercept of the graph of \(h\).

[2]
c(i).

Hence, sketch the graph of \(h\).

[3]
c(ii).

For the graph of \({h^{ – 1}}\), write down the \(x\)-intercept;

[1]
d(i).

For the graph of \({h^{ – 1}}\), write down the equation of the vertical asymptote.

[1]
d(ii).

Given that \({h^{ – 1}}(a) = 3\), find the value of \(a\).

[3]
e.
Answer/Explanation

Markscheme

interchanging \(x\) and \(y\)     (M1)

eg     \(x = 3y – 2\)

\({f^{ – 1}}(x) = \frac{{x + 2}}{3}{\text{   }}\left( {{\text{accept }}y = \frac{{x + 2}}{3},{\text{ }}\frac{{x + 2}}{3}} \right)\)     A1     N2

[2 marks]

a.

attempt to form composite (in any order)     (M1)

eg     \(g\left( {\frac{{x + 2}}{3}} \right),{\text{ }}\frac{{\frac{5}{{3x}} + 2}}{3}\)

correct substitution     A1

eg     \(\frac{5}{{3\left( {\frac{{x + 2}}{3}} \right)}}\)

\(\left( {g \circ {f^{ – 1}}} \right)(x) = \frac{5}{{x + 2}}\)     AG     N0

[2 marks]

b.

valid approach     (M1)

eg     \(h(0),{\text{ }}\frac{5}{{0 + 2}}\)

\(y = \frac{5}{2}{\text{   }}\left( {{\text{accept (0, 2.5)}}} \right)\)     A1     N2

[2 marks]

c(i).

   

A1A2     N3

Notes:     Award A1 for approximately correct shape (reciprocal, decreasing, concave up).

     Only if this A1 is awarded, award A2 for all the following approximately correct features: y-intercept at \((0, 2.5)\), asymptotic to x-axis, correct domain \(x \geqslant 0\).

     If only two of these features are correct, award A1.

[3 marks]

c(ii).

\(x = \frac{5}{2}{\text{   }}\left( {{\text{accept (2.5, 0)}}} \right)\)     A1     N1

[1 mark]

d(i).

\(x = 0\)   (must be an equation)     A1     N1

[1 mark]

d(ii).

METHOD 1

attempt to substitute \(3\) into \(h\) (seen anywhere)     (M1)

eg     \(h(3),{\text{ }}\frac{5}{{3 + 2}}\)

correct equation     (A1)

eg     \(a = \frac{5}{{3 + 2}},{\text{ }}h(3) = a\)

\(a = 1\)     A1     N2

[3 marks]

METHOD 2

attempt to find inverse (may be seen in (d))     (M1)

eg     \(x = \frac{5}{{y + 2}},{\text{ }}{h^{ – 1}} = \frac{5}{x} – 2,{\text{ }}\frac{5}{x} + 2\)

correct equation, \(\frac{5}{x} – 2 = 3\)     (A1)

\(a = 1\)     A1     N2

[3 marks]

e.

Question

The following diagram shows the graph of \(y = f(x)\), for \( – 4 \le x \le 5\).

Write down the value of \(f( – 3)\).[1]

a(i).

Write down the value of  \({f^{ – 1}}(1)\).[1]

a(ii).

Find the domain of \({f^{ – 1}}\).[2]

b.

On the grid above, sketch the graph of \({f^{ – 1}}\).[3]

c.
Answer/Explanation

Markscheme

\(f( – 3) =  – 1\)     A1     N1

[1 mark]

a(i).

\({f^{ – 1}}(1) = 0\)   (accept \(y = 0\))     A1     N1

[1 mark]

a(ii).

domain of \({f^{ – 1}}\) is range of \(f\)     (R1)

eg     \({\text{R}}f = {\text{D}}{f^{ – 1}}\)

correct answer     A1     N2

eg     \( – 3 \leqslant x \leqslant 3,{\text{ }}x \in [ – 3,{\text{ }}3]{\text{   (accept }} – 3 < x < 3,{\text{ }} – 3 \leqslant y \leqslant 3)\)

[2 marks]

b.


     A1A1     N2

Note: Graph must be approximately correct reflection in \(y = x\).

     Only if the shape is approximately correct, award the following:

     A1 for x-intercept at \(1\), and A1 for endpoints within circles.

[2 marks]

c.
Scroll to Top