IB DP Maths Topic 2.3 Composite transformations SL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = {x^2}\) and \(g(x) = 2{(x – 1)^2}\) .

The graph of g can be obtained from the graph of f using two transformations.

Give a full geometric description of each of the two transformations.

[2]
a.

The graph of g is translated by the vector \(\left( {\begin{array}{*{20}{c}}
3\\
{ – 2}
\end{array}} \right)\) to give the graph of h.

The point \(( – 1{\text{, }}1)\) on the graph of f is translated to the point P on the graph of h.

Find the coordinates of P.

[4]
b.
Answer/Explanation

Markscheme

in any order

translated 1 unit to the right     A1     N1

stretched vertically by factor 2     A1     N1

[2 marks]

a.

METHOD 1

finding coordinates of image on g     (A1)(A1)

e.g.  \( – 1 + 1 = 0\) , \(1 \times 2 = 2\) , \(( – 1{\text{, }}1) \to ( – 1 + 1{\text{, }}2 \times 1)\) , \((0{\text{, }}2)\)

P is (3, 0)     A1A1     N4

METHOD 2

\(h(x) = 2{(x – 4)^2} – 2\)     (A1)(A1)

P is \((3{\text{, }}0)\)     A1A1     N4

b.

Question

Let \(f(x) = \frac{{ax}}{{{x^2} + 1}}\) , \( – 8 \le x \le 8\) , \(a \in \mathbb{R}\) .The graph of f is shown below.


The region between \(x = 3\) and \(x = 7\) is shaded.

Show that \(f( – x) = – f(x)\) .

[2]
a.

Given that \(f”(x) = \frac{{2ax({x^2} – 3)}}{{{{({x^2} + 1)}^3}}}\) , find the coordinates of all points of inflexion.

[7]
b.

It is given that \(\int {f(x){\rm{d}}x = \frac{a}{2}} \ln ({x^2} + 1) + C\) .

(i)     Find the area of the shaded region, giving your answer in the form \(p\ln q\) .

(ii)    Find the value of \(\int_4^8 {2f(x – 1){\rm{d}}x} \) .

[7]
c.
Answer/Explanation

Markscheme

METHOD 1

evidence of substituting \( – x\) for \(x\)     (M1)

\(f( – x) = \frac{{a( – x)}}{{{{( – x)}^2} + 1}}\)     A1

\(f( – x) = \frac{{ – ax}}{{{x^2} + 1}}\) \(( = – f(x))\)     AG     N0

METHOD 2

\(y = – f(x)\) is reflection of \(y = f(x)\) in x axis

and \(y = f( – x)\) is reflection of \(y = f(x)\) in y axis     (M1)

sketch showing these are the same     A1

\(f( – x) = \frac{{ – ax}}{{{x^2} + 1}}\) \(( = – f(x))\)     AG     N0

[2 marks]

a.

evidence of appropriate approach     (M1)

e.g. \(f”(x) = 0\)

to set the numerator equal to 0     (A1)

e.g. \(2ax({x^2} – 3) = 0\) ; \(({x^2} – 3) = 0\)

(0, 0) , \(\left( {\sqrt 3 ,\frac{{a\sqrt 3 }}{4}} \right)\) , \(\left( { – \sqrt 3 , – \frac{{a\sqrt 3 }}{4}} \right)\) (accept \(x = 0\) , \(y = 0\) etc)      A1A1A1A1A1     N5

[7 marks]

b.

(i) correct expression     A2

e.g. \(\left[ {\frac{a}{2}\ln ({x^2} + 1)} \right]_3^7\) , \(\frac{a}{2}\ln 50 – \frac{a}{2}\ln 10\) , \(\frac{a}{2}(\ln 50 – \ln 10)\)

area = \(\frac{a}{2}\ln 5\)     A1A1     N2

(ii) METHOD 1

recognizing the shift that does not change the area     (M1)

e.g. \(\int_4^8 {f(x – 1){\rm{d}}x}  = \int_3^7 {f(x){\rm{d}}x} \) , \(\frac{a}{2}\ln 5\)

recognizing that the factor of 2 doubles the area     (M1)

e.g. \(\int_4^8 {2f(x – 1){\rm{d}}x = } 2\int_4^8 {f(x – 1){\rm{d}}x} \) \(\left( { = 2\int_3^7 {f(x){\rm{d}}x} } \right)\)

\(\int_4^8 {2f(x – 1){\rm{d}}x = a\ln 5} \) (i.e. \(2 \times \) their answer to (c)(i))     A1     N3

METHOD 2

changing variable

let \(w = x – 1\) , so \(\frac{{{\rm{d}}w}}{{{\rm{d}}x}} = 1\)

\(2\int {f(w){\rm{d}}w = } \frac{{2a}}{2}\ln ({w^2} + 1) + c\)     (M1)

substituting correct limits

e.g. \(\left[ {a\ln \left[ {{{(x – 1)}^2} + 1} \right]} \right]_4^8\) , \(\left[ {a\ln ({w^2} + 1)} \right]_3^7\) , \(a\ln 50 – a\ln 10\)     (M1)

\(\int_4^8 {2f(x – 1){\rm{d}}x = a\ln 5} \)     A1     N3

[7 marks]

c.

Question

The diagram below shows the graph of a function \(f(x)\) , for \( – 2 \le x \le 4\) .


Let \(h(x) = f( – x)\) . Sketch the graph of \(h\) on the grid below.


[3]
a.

Let \(g(x) = \frac{1}{2}f(x – 1)\) . The point \({\text{A}}(3{\text{, }}2)\) on the graph of \(f\) is transformed to the point P on the graph of \(g\) . Find the coordinates of P.

[3]
b.
Answer/Explanation

Markscheme


     A2     N2

[2 marks]

a.

evidence of appropriate approach     (M1)

e.g. reference to any horizontal shift and/or stretch factor, \(x = 3 + 1\) , \(y = \frac{1}{2} \times 2\)

P is \((4{\text{, }}1)\) (accept \(x = 4\) , \(y = 1\))     A1A1     N3

[3 marks]

b.

Question

The following diagram shows the graph of a function \(f\), for −4 ≤ x ≤ 2.

On the same axes, sketch the graph of \(f\left( { – x} \right)\).

[2]
a.

Another function, \(g\), can be written in the form \(g\left( x \right) = a \times f\left( {x + b} \right)\). The following diagram shows the graph of \(g\).

Write down the value of a and of b.

[4]
b.
Answer/Explanation

Markscheme

A2 N2
[2 marks]

a.

recognizing horizontal shift/translation of 1 unit      (M1)

eg  = 1, moved 1 right

recognizing vertical stretch/dilation with scale factor 2      (M1)

eg   a = 2,  ×(−2)

a = −2,  b = −1     A1A1 N2N2

[4 marks]

b.

Question

Let \(f(x) = 3{(x + 1)^2} – 12\) .

Show that \(f(x) = 3{x^2} + 6x – 9\) .

[2]
a.

For the graph of f

(i)     write down the coordinates of the vertex;

(ii)    write down the y-intercept;

(iii)   find both x-intercepts.

[7]
b(i), (ii) and (iii).

Hence sketch the graph of f .

[3]
c.

Let \(g(x) = {x^2}\) . The graph of f may be obtained from the graph of g by the following two transformations

a stretch of scale factor t in the y-direction,

followed by a translation of \(\left( \begin{array}{l}
p\\
q
\end{array} \right)\) .

Write down \(\left( \begin{array}{l}
p\\
q
\end{array} \right)\) and the value of t .

[3]
d.
Answer/Explanation

Markscheme

\(f(x) = 3({x^2} + 2x + 1) – 12\)     A1

\( = 3{x^2} + 6x + 3 – 12\)     A1

\( = 3{x^2} + 6x – 9\)     AG     N0

[2 marks]

a.

(i) vertex is \(( – 1, – 12)\)     A1A1     N2

(ii) \(y = – 9\) , or \((0, – 9)\)     A1     N1

(iii) evidence of solving \(f(x) = 0\)     M1

e.g. factorizing, formula

correct working     A1

e.g. \(3(x + 3)(x – 1) = 0\) , \(x = \frac{{ – 6 \pm \sqrt {36 + 108} }}{6}\)

\(x = – 3\) , \(x = 1\) , or \(( – 3{\text{, }}0){\text{, }}(1{\text{, }}0)\)     A1A1     N2

[7 marks]

b(i), (ii) and (iii).


     A1A1A1     N3

Note: Award A1 for a parabola opening upward, A1 for vertex in approximately correct position, A1 for intercepts in approximately correct positions. Scale and labelling not required.

[3 marks]

c.

\(\left( \begin{array}{l}
p\\
q
\end{array} \right) = \left( \begin{array}{l}
– 1\\
– 12
\end{array} \right)\) , \(t = 3\)     A1A1A1     N3

[3 marks]

d.
Scroll to Top