IB DP Maths Topic 2.4 The form x↦a(x−h)2+k , vertex (h,k) SL Paper 1

Question

Let \(f\) be a quadratic function. Part of the graph of \(f\) is shown below.

The vertex is at P(\(4\), \(2\)) and the y-intercept is at Q(\(0\), \(6\)) .

Write down the equation of the axis of symmetry.

[1]
a.

The function f can be written in the form \(f(x) = a{(x – h)^2} + k\) .

Write down the value of h and of k .

[2]
b.

The function f can be written in the form \(f(x) = a{(x – h)^2} + k\) .

Find a .

[3]
c.
Answer/Explanation

Markscheme

\(x = 4\) (must be an equation)     A1     N1

[1 mark]

a.

\(h = 4\) , \(k = 2\)     A1A1     N2

[2 marks]

b.

attempt to substitute coordinates of any point on the graph into f     (M1)

e.g. \(f(0) = 6\) , \(6 = a{(0 – 4)^2} + 2\) , \(f(4) = 2\)

correct equation (do not accept an equation that results from \(f(4) = 2\) )     (A1)

e.g. \(6 = a{( – 4)^2} + 2\) , \(6 = 16a + 2\)

\(a = \frac{4}{{16}}\left( { = \frac{1}{4}} \right)\)     A1     N2

[3 marks]

c.

Question

Let \(f(x) = \sin x + \frac{1}{2}{x^2} – 2x\) , for \(0 \le x \le \pi \) .

Let \(g\) be a quadratic function such that \(g(0) = 5\) . The line \(x = 2\) is the axis of symmetry of the graph of \(g\) .

The function \(g\) can be expressed in the form \(g(x) = a{(x – h)^2} + 3\) .

Find \(f'(x)\) .

[3]
a.

Find \(g(4)\) .

[3]
b.

(i)     Write down the value of \(h\) .

(ii)     Find the value of \(a\) .

[4]
c.

Find the value of \(x\) for which the tangent to the graph of \(f\) is parallel to the tangent to the graph of \(g\) .

[6]
d.
Answer/Explanation

Markscheme

\(f'(x) = \cos x + x – 2\)     A1A1A1     N3

Note: Award A1 for each term.

[3 marks]

a.

recognizing \(g(0) = 5\) gives the point (\(0\), \(5\))     (R1)

recognize symmetry     (M1)

eg vertex, sketch

\(g(4) = 5\)     A1     N3

[3 marks]

b.

(i)     \(h = 2\)     A1 N1

(ii)     substituting into \(g(x) = a{(x – 2)^2} + 3\) (not the vertex)     (M1)

eg   \(5 = a{(0 – 2)^2} + 3\) , \(5 = a{(4 – 2)^2} + 3\)

working towards solution     (A1)

eg   \(5 = 4a + 3\) , \(4a = 2\)

\(a = \frac{1}{2}\)     A1     N2

[4 marks]

c.

\(g(x) = \frac{1}{2}{(x – 2)^2} + 3 = \frac{1}{2}{x^2} – 2x + 5\)

correct derivative of \(g\)     A1A1

eg   \(2 \times \frac{1}{2}(x – 2)\) , \(x – 2\)

evidence of equating both derivatives     (M1)

eg   \(f’ = g’\)

correct equation     (A1)

eg   \(\cos x + x – 2 = x – 2\)

working towards a solution     (A1)

eg   \(\cos x = 0\) , combining like terms

\(x = \frac{\pi }{2}\)    A1     N0

Note: Do not award final A1 if additional values are given.

[6 marks]

d.

Question

Let \(f(x) = a{(x – h)^2} + k\). The vertex of the graph of \(f\) is at \((2, 3)\) and the graph passes through \((1, 7)\).

Write down the value of \(h\) and of \(k\).

[2]
a.

Find the value of \(a\).

[3]
b.
Answer/Explanation

Markscheme

\(h = 2,{\text{ }}k = 3\)     A1A1     N2

[2 marks]

a.

attempt to substitute \((1,7)\) in any order into their \(f(x)\)     (M1)

eg     \(7 = a{(1 – 2)^2} + 3{\text{, }}7 = a{(1 – 3)^2} + 2{\text{, }}1 = a{(7 – 2)^2} + 3\)

correct equation     (A1)

eg     \(7 = a + 3\)

a = 4     A1     N2

[3 marks]

b.

Examiners report

[N/A]

a.

[N/A]

b.

Question

Let \(f(x) = 3{x^2} – 6x + p\). The equation \(f(x) = 0\) has two equal roots.

Write down the value of the discriminant.

[2]
a(i).

Hence, show that \(p = 3\).

[1]
a(ii).

The graph of \(f\)has its vertex on the \(x\)-axis.

Find the coordinates of the vertex of the graph of \(f\).

[4]
b.

The graph of \(f\) has its vertex on the \(x\)-axis.

Write down the solution of \(f(x) = 0\).

[1]
c.

The graph of \(f\) has its vertex on the \(x\)-axis.

The function can be written in the form \(f(x) = a{(x – h)^2} + k\). Write down the value of \(a\).

[1]
d(i).

The graph of \(f\) has its vertex on the \(x\)-axis.

The function can be written in the form \(f(x) = a{(x – h)^2} + k\). Write down the value of \(h\).

[1]
d(ii).

The graph of \(f\) has its vertex on the \(x\)-axis.

The function can be written in the form \(f(x) = a{(x – h)^2} + k\). Write down the value of \(k\).

[1]
d(iii).

The graph of \(f\) has its vertex on the \(x\)-axis.

The graph of a function \(g\) is obtained from the graph of \(f\) by a reflection of \(f\) in the \(x\)-axis, followed by a translation by the vector \(\left( \begin{array}{c}0\\6\end{array} \right)\). Find \(g\), giving your answer in the form \(g(x) = A{x^2} + Bx + C\).

[4]
e.
Answer/Explanation

Markscheme

correct value \(0\), or \(36 – 12p\)     A2     N2

[2 marks]

a(i).

correct equation which clearly leads to \(p = 3\)     A1

eg     \(36 – 12p = 0,{\text{ }}36 = 12p\)

\(p = 3\)     AG     N0

[1 mark]

a(ii).

METHOD 1

valid approach     (M1)

eg     \(x =  – \frac{b}{{2a}}\)

correct working     A1

eg     \( – \frac{{( – 6)}}{{2(3)}},{\text{ }}x = \frac{6}{6}\)

correct answers     A1A1     N2

eg     \(x = 1,{\text{ }}y = 0;{\text{ }}(1,{\text{ }}0)\)

METHOD 2

valid approach     (M1)

eg     \(f(x) = 0\), factorisation, completing the square

correct working     A1

eg     \({x^2} – 2x + 1 = 0,{\text{ }}(3x – 3)(x – 1),{\text{ }}f(x) = 3{(x – 1)^2}\)

correct answers     A1A1     N2

eg     \(x = 1,{\text{ }}y = 0;{\text{ }}(1,{\text{ }}0)\)

METHOD 3

valid approach using derivative     (M1)

eg     \(f'(x) = 0,{\text{ }}6x – 6\)

correct equation     A1

eg     \(6x – 6 = 0\)

correct answers     A1A1     N2

eg     \(x = 1,{\text{ }}y = 0;{\text{ }}(1,{\text{ }}0)\)

[4 marks]

b.

\(x = 1\)     A1     N1

[1 mark]

c.

\(a = 3\)     A1     N1

[1 mark]

d(i).

\(h = 1\)     A1     N1

[1 mark]

d(ii).

\(k = 0\)     A1     N1

[1 mark]

d(iii).

attempt to apply vertical reflection     (M1)

eg     \( – f(x),{\text{ }} – 3{(x – 1)^2}\), sketch

attempt to apply vertical shift 6 units up     (M1)

eg     \( – f(x) + 6\), vertex \((1, 6)\)

transformations performed correctly (in correct order)     (A1)

eg     \( – 3{(x – 1)^2} + 6,{\text{ }} – 3{x^2} + 6x – 3 + 6\)

\(g(x) =  – 3{x^2} + 6x + 3\)     A1     N3

[4 marks]

e.

Question

Consider \(f(x) = {x^2} + qx + r\). The graph of \(f\) has a minimum value when \(x =  – 1.5\).

The distance between the two zeros of \(f\) is 9.

Show that the two zeros are 3 and \( – 6\).

[2]
a.

Find the value of \(q\) and of \(r\).

[4]
b.
Answer/Explanation

Markscheme

recognition that the \(x\)-coordinate of the vertex is \( – 1.5\) (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)axis of symmetry is \( – 1.5\), sketch, \(f'( – 1.5) = 0\)

correct working to find the zeroes     A1

eg\(\,\,\,\,\,\)\( – 1.5 \pm 4.5\)

\(x =  – 6\) and \(x = 3\)     AG     N0

[2 marks]

a.

METHOD 1 (using factors)

attempt to write factors     (M1)

eg\(\,\,\,\,\,\)\((x – 6)(x + 3)\)

correct factors     A1

eg\(\,\,\,\,\,\)\((x – 3)(x + 6)\)

\(q = 3,{\text{ }}r =  – 18\)    A1A1     N3

METHOD 2 (using derivative or vertex)

valid approach to find \(q\)     (M1)

eg\(\,\,\,\,\,\)\(f'( – 1.5) = 0,{\text{ }} – \frac{q}{{2a}} =  – 1.5\)

\(q = 3\)    A1

correct substitution     A1

eg\(\,\,\,\,\,\)\({3^2} + 3(3) + r = 0,{\text{ }}{( – 6)^2} + 3( – 6) + r = 0\)

\(r =  – 18\)    A1

\(q = 3,{\text{ }}r =  – 18\)    N3

METHOD 3 (solving simultaneously)

valid approach setting up system of two equations     (M1)

eg\(\,\,\,\,\,\)\(9 + 3q + r = 0,{\text{ }}36 – 6q + r = 0\)

one correct value

eg\(\,\,\,\,\,\)\(q = 3,{\text{ }}r =  – 18\)     A1

correct substitution     A1

eg\(\,\,\,\,\,\)\({3^2} + 3(3) + r = 0,{\text{ }}{( – 6)^2} + 3( – 6) + r = 0,{\text{ }}{3^2} + 3q – 18 = 0,{\text{ }}36 – 6q – 18 = 0\)

second correct value     A1

eg\(\,\,\,\,\,\)\(q = 3,{\text{ }}r =  – 18\)

\(q = 3,{\text{ }}r =  – 18\)    N3

[4 marks]

b.

Question

Let f(x) = ax2 − 4xc. A horizontal line, L , intersects the graph of f at x = −1 and x = 3.

The equation of the axis of symmetry is x = p. Find p.

[2]
a.i.

Hence, show that a = 2.

[2]
a.ii.

The equation of L is y = 5 . Find the value of c.

[3]
b.
Answer/Explanation

Markscheme

METHOD 1 (using symmetry to find p)

valid approach      (M1)

eg  \(\frac{{ – 1 + 3}}{2}\), 

p = 1     A1 N2

Note: Award no marks if they work backwards by substituting a = 2 into \( – \frac{b}{{2a}}\) to find p.

Do not accept \(p = \frac{2}{a}\).

METHOD 2 (calculating a first)
(i) & (ii) valid approach to calculate a      M1

eg   a + 4 − c = a(32) − 4(3) − c,  f(−1) = f(3)

correct working      A1

eg   8a = 16

a = 2      AG N0

valid approach to find p      (M1)

eg   \( – \frac{b}{{2a}},\,\,\,\frac{4}{{2\left( 2 \right)}}\)

p = 1      A1 N2

[2 marks]

a.i.

METHOD 1

valid approach       M1

eg  \( – \frac{b}{{2a}},\,\,\,\frac{4}{{2a}}\) (might be seen in (i)), f’ (1) = 0

correct equation     A1

eg  \(\frac{4}{{2a}}\) = 1, 2a(1) − 4 = 0

a = 2      AG N0

METHOD 2 (calculating a first)
(i) & (ii) valid approach to calculate a      M1

eg   a + 4 − c = a(32) − 4(3) − c,  f(−1) = f(3)

correct working      A1

eg   8a = 16

a = 2      AG N0

[2 marks]

a.ii.

valid approach      (M1)
eg   f(−1) = 5, f(3) =5

correct working       (A1)
eg   2 + 4 − c = 5, 18 − 12 − c = 5

c = 1     A1 N2

[3 marks]

b.

Question

Let \(f\left( x \right) = p{x^2} + qx – 4p\), where p ≠ 0. Find Find the number of roots for the equation \(f\left( x \right) = 0\).

Justify your answer.

Answer/Explanation

Markscheme

METHOD 1

evidence of discriminant      (M1)
eg  \({b^2} – 4ac,\,\,\Delta \)

correct substitution into discriminant      (A1)
eg  \({q^2} – 4p\left( { – 4p} \right)\)

correct discriminant       A1
eg  \({q^2} + 16{p^2}\)

\(16{p^2} > 0\,\,\,\,\left( {{\text{accept}}\,\,{p^2} > 0} \right)\)     A1

\({q^2} \geqslant 0\,\,\,\,\left( {{\text{do not accept}}\,\,{q^2} > 0} \right)\)     A1

\({q^2} + 16{p^2} > 0\)      A1

\(f\) has 2 roots     A1 N0

METHOD 2

y-intercept = −4p (seen anywhere)      A1

if p is positive, then the y-intercept will be negative      A1

an upward-opening parabola with a negative y-intercept      R1
eg  sketch that must indicate p > 0.

if p is negative, then the y-intercept will be positive      A1

a downward-opening parabola with a positive y-intercept      R1
eg  sketch that must indicate p > 0.

\(f\) has 2 roots     A2 N0

[7 marks]

Question

Let \(f(x) = 3{(x + 1)^2} – 12\) .

Show that \(f(x) = 3{x^2} + 6x – 9\) .

[2]
a.

For the graph of f

(i)     write down the coordinates of the vertex;

(ii)    write down the y-intercept;

(iii)   find both x-intercepts.

[7]
b(i), (ii) and (iii).

Hence sketch the graph of f .

[3]
c.

Let \(g(x) = {x^2}\) . The graph of f may be obtained from the graph of g by the following two transformations

a stretch of scale factor t in the y-direction,

followed by a translation of \(\left( \begin{array}{l}
p\\
q
\end{array} \right)\) .

Write down \(\left( \begin{array}{l}
p\\
q
\end{array} \right)\) and the value of t .

[3]
d.
Answer/Explanation

Markscheme

\(f(x) = 3({x^2} + 2x + 1) – 12\)     A1

\( = 3{x^2} + 6x + 3 – 12\)     A1

\( = 3{x^2} + 6x – 9\)     AG     N0

[2 marks]

a.

(i) vertex is \(( – 1, – 12)\)     A1A1     N2

(ii) \(y = – 9\) , or \((0, – 9)\)     A1     N1

(iii) evidence of solving \(f(x) = 0\)     M1

e.g. factorizing, formula

correct working     A1

e.g. \(3(x + 3)(x – 1) = 0\) , \(x = \frac{{ – 6 \pm \sqrt {36 + 108} }}{6}\)

\(x = – 3\) , \(x = 1\) , or \(( – 3{\text{, }}0){\text{, }}(1{\text{, }}0)\)     A1A1     N2

[7 marks]

b(i), (ii) and (iii).


     A1A1A1     N3

Note: Award A1 for a parabola opening upward, A1 for vertex in approximately correct position, A1 for intercepts in approximately correct positions. Scale and labelling not required.

[3 marks]

c.

\(\left( \begin{array}{l}
p\\
q
\end{array} \right) = \left( \begin{array}{l}
– 1\\
– 12
\end{array} \right)\) , \(t = 3\)     A1A1A1     N3

[3 marks]

d.
Scroll to Top