IB DP Maths Topic 2.5 The rational function x↦ax+b/cx+d and its graph SL Paper 1

Question

Let \(f(x) = 3x – 2\) and \(g(x) = \frac{5}{{3x}}\), for \(x \ne 0\).

Let \(h(x) = \frac{5}{{x + 2}}\), for \(x \geqslant 0\). The graph of h has a horizontal asymptote at \(y = 0\).

Find \({f^{ – 1}}(x)\).

[2]
a.

Show that \(\left( {g \circ {f^{ – 1}}} \right)(x) = \frac{5}{{x + 2}}\).

[2]
b.

Find the \(y\)-intercept of the graph of \(h\).

[2]
c(i).

Hence, sketch the graph of \(h\).

[3]
c(ii).

For the graph of \({h^{ – 1}}\), write down the \(x\)-intercept;

[1]
d(i).

For the graph of \({h^{ – 1}}\), write down the equation of the vertical asymptote.

[1]
d(ii).

Given that \({h^{ – 1}}(a) = 3\), find the value of \(a\).

[3]
e.
Answer/Explanation

Markscheme

interchanging \(x\) and \(y\)     (M1)

eg     \(x = 3y – 2\)

\({f^{ – 1}}(x) = \frac{{x + 2}}{3}{\text{   }}\left( {{\text{accept }}y = \frac{{x + 2}}{3},{\text{ }}\frac{{x + 2}}{3}} \right)\)     A1     N2

[2 marks]

a.

attempt to form composite (in any order)     (M1)

eg     \(g\left( {\frac{{x + 2}}{3}} \right),{\text{ }}\frac{{\frac{5}{{3x}} + 2}}{3}\)

correct substitution     A1

eg     \(\frac{5}{{3\left( {\frac{{x + 2}}{3}} \right)}}\)

\(\left( {g \circ {f^{ – 1}}} \right)(x) = \frac{5}{{x + 2}}\)     AG     N0

[2 marks]

b.

valid approach     (M1)

eg     \(h(0),{\text{ }}\frac{5}{{0 + 2}}\)

\(y = \frac{5}{2}{\text{   }}\left( {{\text{accept (0, 2.5)}}} \right)\)     A1     N2

[2 marks]

c(i).

     A1A2     N3

Notes:     Award A1 for approximately correct shape (reciprocal, decreasing, concave up).

     Only if this A1 is awarded, award A2 for all the following approximately correct features: y-intercept at \((0, 2.5)\), asymptotic to x-axis, correct domain \(x \geqslant 0\).

     If only two of these features are correct, award A1.

[3 marks]

c(ii).

\(x = \frac{5}{2}{\text{   }}\left( {{\text{accept (2.5, 0)}}} \right)\)     A1     N1

[1 mark]

d(i).

\(x = 0\)   (must be an equation)     A1     N1

[1 mark]

d(ii).

METHOD 1

attempt to substitute \(3\) into \(h\) (seen anywhere)     (M1)

eg     \(h(3),{\text{ }}\frac{5}{{3 + 2}}\)

correct equation     (A1)

eg     \(a = \frac{5}{{3 + 2}},{\text{ }}h(3) = a\)

\(a = 1\)     A1     N2

[3 marks]

METHOD 2

attempt to find inverse (may be seen in (d))     (M1)

eg     \(x = \frac{5}{{y + 2}},{\text{ }}{h^{ – 1}} = \frac{5}{x} – 2,{\text{ }}\frac{5}{x} + 2\)

correct equation, \(\frac{5}{x} – 2 = 3\)     (A1)

\(a = 1\)     A1     N2

[3 marks]

e.

Question

Let \(f(x) = p + \frac{9}{{x – q}}\), for \(x \ne q\). The line \(x = 3\) is a vertical asymptote to the graph of \(f\).

Write down the value of \(q\).

[1]
a.

The graph of \(f\) has a \(y\)-intercept at \((0,{\text{ }}4)\).

Find the value of \(p\).

[4]
b.

The graph of \(f\) has a \(y\)-intercept at \((0,{\text{ }}4)\).

Write down the equation of the horizontal asymptote of the graph of \(f\).

[1]
c.
Answer/Explanation

Markscheme

\(q = 3\)     A1     N1

[1 mark]

a.

correct expression for \(f(0)\)     (A1)

eg\(\;\;\;p + \frac{9}{{0 – 3}},{\text{ }}4 = p + \frac{9}{{ – q}}\)

recognizing that \(f(0) = 4\;\;\;\)(may be seen in equation)     (M1)

correct working     (A1)

eg\(\;\;\;4 = p – 3\)

\(p = 7\)     A1     N3

[3 marks]

b.

\(y = 7\;\;\;\)(must be an equation, do not accept \(p = 7\)     A1     N1

[1 mark]

Total [6 marks]

c.

Question

Let \(f(x) = m – \frac{1}{x}\), for \(x \ne 0\). The line \(y = x – m\) intersects the graph of \(f\) in two distinct points. Find the possible values of \(m\).

Answer/Explanation

Markscheme

valid approach     (M1)

eg\(\,\,\,\,\,\)\(f = y,{\text{ }}m – \frac{1}{x} = x – m\)

correct working to eliminate denominator     (A1)

eg\(\,\,\,\,\,\)\(mx – 1 = x(x – m),{\text{ }}mx – 1 = {x^2} – mx\)

correct quadratic equal to zero     A1

eg\(\,\,\,\,\,\)\({x^2} – 2mx + 1 = 0\)

correct reasoning     R1

eg\(\,\,\,\,\,\)for two solutions, \({b^2} – 4ac > 0\)

correct substitution into the discriminant formula     (A1)

eg\(\,\,\,\,\,\)\({( – 2m)^2} – 4\)

correct working     (A1)

eg\(\,\,\,\,\,\)\(4{m^2} > 4,{\text{ }}{m^2} = 1\), sketch of positive parabola on the \(x\)-axis

correct interval     A1     N4

eg\(\,\,\,\,\,\)\(\left| m \right| > 1,{\text{ }}m <  – 1\) or \(m > 1\)

[7 marks]

Scroll to Top