IB DP Maths Topic 2.6 Logarithmic functions and their graphs: x↦logax SL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = {\log _p}(x + 3)\) for \(x >  – 3\) . Part of the graph of f is shown below.


The graph passes through A(6, 2) , has an x-intercept at (−2, 0) and has an asymptote at \(x =  – 3\) .

Find p .

[4]
a.

The graph of f is reflected in the line \(y = x\) to give the graph of g .

(i)     Write down the y-intercept of the graph of g .

(ii)    Sketch the graph of g , noting clearly any asymptotes and the image of A.

[5]
b.

The graph of \(f\) is reflected in the line \(y = x\) to give the graph of \(g\) .

Find \(g(x)\) .

[4]
c.
Answer/Explanation

Markscheme

evidence of substituting the point A     (M1)

e.g. \(2 = {\log _p}(6 + 3)\)

manipulating logs     A1

e.g. \({p^2} = 9\)

\(p = 3\)     A2     N2

[4 marks]

a.

(i) \(y = – 2\) (accept \((0{\text{, }} – 2))\)     A1     N1

(ii)


     A1A1A1A1     N4

Note: Award A1 for asymptote at \(y = – 3\) , A1 for an increasing function that is concave up, A1 for a positive x-intercept and a negative y-intercept, A1 for passing through the point \((2{\text{, }}6)\) .

[5 marks] 

b.

METHOD 1

recognizing that \(g = {f^{ – 1}}\)     (R1)

evidence of valid approach     (M1)

e.g. switching x and y (seen anywhere), solving for x

correct manipulation     (A1)

e.g. \({3^x} = y + 3\)

\(g(x) = {3^x} – 3\)     A1     N3

METHOD 2

recognizing that \(g(x) = {a^x} + b\)     (R1) 

identifying vertical translation     (A1)

e.g. graph shifted down 3 units, \(f(x) – 3\)

evidence of valid approach     (M1)

e.g. substituting point to identify the base

\(g(x) = {3^x} – 3\)     A1     N3

[4 marks]

c.

Question

Find the value of \({\log _2}40 – {\log _2}5\) .

[3]
a.

Find the value of \({8^{{{\log }_2}5}}\) .

[4]
b.
Answer/Explanation

Markscheme

evidence of correct formula    (M1)

eg   \(\log a – \log b = \log \frac{a}{b}\) , \(\log \left( {\frac{{40}}{5}} \right)\) , \(\log 8 + \log 5 – \log 5\)

Note: Ignore missing or incorrect base.

correct working     (A1)

eg   \({\log _2}8\) , \({2^3} = 8\)

\({\log _2}40 – {\log _2}5 = 3\)     A1     N2

[3 marks]

a.

attempt to write \(8\) as a power of \(2\) (seen anywhere)     (M1)

eg   \({({2^3})^{{{\log }_2}5}}\) , \({2^3} = 8\) , \({2^a}\)

multiplying powers     (M1)

eg   \({2^{3{{\log }_2}5}}\) , \(a{\log _2}5\)

correct working     (A1)

eg   \({2^{{{\log }_2}125}}\) , \({\log _2}{5^3}\) , \({\left( {{2^{{{\log }_2}5}}} \right)^3}\)

\({8^{{{\log }_2}5}} = 125\)     A1     N3

[4 marks]

b.
Scroll to Top