IB DP Maths Topic 2.7 Solving ax2+bx+c=0 , a≠0 . SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Consider an infinite geometric sequence with \({u_1} = 40\) and \(r = \frac{1}{2}\) .

(i)     Find \({u_4}\) .

(ii)    Find the sum of the infinite sequence.

[4]
a(i) and (ii).

Consider an arithmetic sequence with n terms, with first term (\( – 36\)) and eighth term (\( – 8\)) .

(i)     Find the common difference.

(ii)    Show that \({S_n} = 2{n^2} – 38n\) .

[5]
b(i) and (ii).

The sum of the infinite geometric sequence is equal to twice the sum of the arithmetic sequence. Find n .

[5]
c.
Answer/Explanation

Markscheme

(i) correct approach     (A1)

e.g. \({u_4} = (40){\frac{1}{2}^{(4 – 1)}}\) , listing terms

\({u_4} = 5\)     A1     N2

(ii) correct substitution into formula for infinite sum     (A1)

e.g. \({S_\infty } = \frac{{40}}{{1 – 0.5}}\) , \({S_\infty } = \frac{{40}}{{0.5}}\)

\({S_\infty } = 80\)     A1     N2

[4 marks]

a(i) and (ii).

(i) attempt to set up expression for \({u_8}\)     (M1)

e.g. \( – 36 + (8 – 1)d\)

correct working     A1

e.g. \( – 8 = – 36 + (8 – 1)d\) , \(\frac{{ – 8 – ( – 36)}}{7}\)

\(d = 4\)     A1     N2

(ii) correct substitution into formula for sum     (A1)

e.g. \({S_n} = \frac{n}{2}(2( – 36) + (n – 1)4)\)

correct working     A1

e.g. \({S_n} = \frac{n}{2}(4n – 76)\) , \( – 36n + 2{n^2} – 2n\)

\({S_n} = 2{n^2} – 38n\)     AG     N0

[5 marks]

b(i) and (ii).

multiplying \({S_n}\) (AP) by 2 or dividing S (infinite GP) by 2     (M1)

e.g. \(2{S_n}\) , \(\frac{{{S_\infty }}}{2}\) , 40

evidence of substituting into \(2{S_n} = {S_\infty }\)     A1

e.g. \(2{n^2} – 38n = 40\) , \(4{n^2} – 76n – 80\) (\( = 0\))

attempt to solve their quadratic (equation)     (M1)

e.g. intersection of graphs, formula

\(n = 20\)     A2     N3

[5 marks]

c.
Scroll to Top