IB DP Maths Topic 3.2 Definition of cosθ and sinθ in terms of the unit circle SL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(p = \sin 40^\circ \) and \(q = \cos 110^\circ \) . Give your answers to the following in terms of p and/or q .

Write down an expression for

(i)     \(\sin 140^\circ \) ;

(ii)    \(\cos 70^\circ \) .

[2]
a(i) and (ii).

Find an expression for \(\cos 140^\circ \) .

[3]
b.

Find an expression for \(\tan 140^\circ \) .

[1]
c.
Answer/Explanation

Markscheme

(i) \(\sin 140^\circ = p\)     A1     N1

(ii) \(\cos 70^\circ = – q\)     A1     N1

[2 marks]

a(i) and (ii).

METHOD 1

evidence of using \({\sin ^2}\theta + {\cos ^2}\theta = 1\)     (M1)

e.g. diagram, \(\sqrt {1 – {p^2}} \) (seen anywhere)

\(\cos 140^\circ = \pm \sqrt {1 – {p^2}} \)     (A1)

\(\cos 140^\circ = – \sqrt {1 – {p^2}} \)     A1     N2

METHOD 2

evidence of using \(\cos 2\theta = 2{\cos ^2}\theta – 1\)     (M1)

\(\cos 140^\circ = 2{\cos ^2}70 – 1\)     (A1)

\(\cos 140^\circ = 2{( – q)^2} – 1\) \(( = 2{q^2} – 1)\)     A1     N2

[3 marks]

b.

METHOD 1

\(\tan 140^\circ = \frac{{\sin 140^\circ }}{{\cos 140^\circ }} = – \frac{p}{{\sqrt {1 – {p^2}} }}\)     A1     N1

METHOD 2

\(\tan 140^\circ = \frac{p}{{2{q^2} – 1}}\)     A1     N1

[1 mark]

c.

Question

A rectangle is inscribed in a circle of radius 3 cm and centre O, as shown below.


The point P(x , y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is \(\theta \) radians, where \(0 \le \theta  \le \frac{\pi }{2}\) .

Write down an expression in terms of \(\theta \) for

(i)     \(x\) ;

(ii)    \(y\) .

[2]
a.

Let the area of the rectangle be A.

Show that \(A = 18\sin 2\theta \) .

[3]
b.

(i)     Find \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }}\) .

(ii)    Hence, find the exact value of \(\theta \) which maximizes the area of the rectangle.

(iii)   Use the second derivative to justify that this value of \(\theta \) does give a maximum.

[8]
c.
Answer/Explanation

Markscheme

(i) \(x = 3\cos \theta \)     A1     N1 

(ii) \(y = 3\sin \theta \)     A1     N1

[2 marks]

a.

finding area     (M1)

e.g. \(A = 2x \times 2y\) , \(A = 8 \times \frac{1}{2}bh\) 

substituting     A1

e.g. \(A = 4 \times 3\sin \theta  \times 3\cos \theta \) , \(8 \times \frac{1}{2} \times 3\cos \theta  \times 3\sin \theta \)

\(A = 18(2\sin \theta \cos \theta )\)    A1

\(A = 18\sin 2\theta \)     AG     N0

[3 marks]

b.

(i) \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }} = 36\cos 2\theta \)     A2     N2 

(ii) for setting derivative equal to 0     (M1)

e.g. \(36\cos 2\theta  = 0\) , \(\frac{{{\rm{d}}A}}{{{\rm{d}}\theta }} = 0\)

\(2\theta  = \frac{\pi }{2}\)     (A1)

\(\theta  = \frac{\pi }{4}\)     A1     N2

(iii) valid reason (seen anywhere)     R1

e.g. at \(\frac{\pi }{4}\), \(\frac{{{{\rm{d}}^2}A}}{{{\rm{d}}{\theta ^2}}} < 0\) ; maximum when \(f”(x) < 0\)

finding second derivative \(\frac{{{{\rm{d}}^2}A}}{{{\rm{d}}{\theta ^2}}} =  – 72\sin 2\theta \)     A1

evidence of substituting \(\frac{\pi }{4}\)     M1

e.g. \( – 72\sin \left( {2 \times \frac{\pi }{4}} \right)\) , \( – 72\sin \left( {\frac{\pi }{2}} \right)\) , \( – 72\)

\(\theta  = \frac{\pi }{4}\) produces the maximum area     AG     N0

[8 marks]

c.

Question

Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.
This is shown in the following diagram.

The vectors p , q and r are shown on the diagram.

Find p•(p + q + r).

Answer/Explanation

Markscheme

METHOD 1 (using |p| |2q| cosθ)

finding p + q + r (A1)

eg 2q,

| p + q + r | = 2 × 3 (= 6) (seen anywhere) A1

correct angle between p and q (seen anywhere) (A1)

\(\frac{\pi }{3}\) (accept 60°)

substitution of their values (M1)

eg 3 × 6 × cos\(\left( {\frac{\pi }{3}} \right)\)

correct value for cos\(\left( {\frac{\pi }{3}} \right)\) (seen anywhere) (A1)

eg \(\frac{1}{2},\,\,\,3 \times 6 \times \frac{1}{2}\)

p•(p + q + r) = 9 A1 N3

METHOD 2 (scalar product using distributive law)

correct expression for scalar distribution (A1)

eg pp + pq + pr

three correct angles between the vector pairs (seen anywhere) (A2)

eg 0° between p and p, \(\frac{\pi }{3}\) between p and q, \(\frac{{2\pi }}{3}\) between p and r

Note: Award A1 for only two correct angles.

substitution of their values (M1)

eg 3.3.cos0 +3.3.cos\(\frac{\pi }{3}\) + 3.3.cos120

one correct value for cos0, cos\(\left( {\frac{\pi }{3}} \right)\) or cos\(\left( {\frac{2\pi }{3}} \right)\) (seen anywhere) A1

eg \(\frac{1}{2},\,\,\,3 \times 6 \times \frac{1}{2}\)

p•(p + q + r) = 9 A1 N3

METHOD 3 (scalar product using relative position vectors)

valid attempt to find one component of p or r (M1)

eg sin 60 = \(\frac{x}{3}\), cos 60 = \(\frac{x}{3}\), one correct value \(\frac{3}{2},\,\,\frac{{3\sqrt 3 }}{2},\,\,\frac{{ – 3\sqrt 3 }}{2}\)

one correct vector (two or three dimensions) (seen anywhere) A1

eg \(p = \left( \begin{gathered}
\,\,\,\frac{3}{2} \hfill \\
\frac{{3\sqrt 3 }}{2} \hfill \\
\end{gathered} \right),\,\,q = \left( \begin{gathered}
3 \hfill \\
0 \hfill \\
\end{gathered} \right),\,\,r = \left( \begin{gathered}
\,\,\,\,\frac{3}{2} \hfill \\
– \frac{{3\sqrt 3 }}{2} \hfill \\
\,\,\,\,0 \hfill \\
\end{gathered} \right)\)

three correct vectors p + q + r = 2q (A1)

p + q + r = \(\left( \begin{gathered}
6 \hfill \\
0 \hfill \\
\end{gathered} \right)\) or \(\left( \begin{gathered}
6 \hfill \\
0 \hfill \\
0 \hfill \\
\end{gathered} \right)\) (seen anywhere, including scalar product) (A1)

correct working (A1)
eg \(\left( {\frac{3}{2} \times 6} \right) + \left( {\frac{{3\sqrt 3 }}{2} \times 0} \right),\,\,9 + 0 + 0\)

p•(p + q + r) = 9 A1 N3

[6 marks]

Question

The first two terms of an infinite geometric sequence are u1 = 18 and u2 = 12sin2 θ , where 0 < θ < 2\(\pi \) , and θ ≠ \(\pi \).

Find an expression for r in terms of θ.

[2]
a.i.

Find the possible values of r.

[3]
a.ii.

Show that the sum of the infinite sequence is \(\frac{{54}}{{2 + {\text{cos}}\,\left( {2\theta } \right)}}\).

[4]
b.

Find the values of θ which give the greatest value of the sum.

[6]
c.
Answer/Explanation

Markscheme

valid approach     (M1)

eg   \(\frac{{{u_2}}}{{{u_1}}},\,\,\frac{{{u_1}}}{{{u_2}}}\)

\(r = \frac{{12\,{{\sin }^2}\,\theta }}{{18}}\left( { = \frac{{2\,{{\sin }^2}\,\theta }}{3}} \right)\)      A1 N2

[2 marks]

a.i.

recognizing that sinθ is bounded      (M1)

eg    0 sin2 θ ≤ 1, −1 ≤ sinθ ≤ 1, −1 < sinθ < 1

0 < r ≤ \(\frac{2}{3}\)      A2 N3

Note: If working shown, award M1A1 for correct values with incorrect inequality sign(s).
If no working shown, award N1 for correct values with incorrect inequality sign(s).

[3 marks]

a.ii.

correct substitution into formula for infinite sum       A1

eg  \(\frac{{18}}{{1 – \frac{{2\,{\text{si}}{{\text{n}}^2}\,\theta }}{3}}}\)

evidence of choosing an appropriate rule for cos 2θ (seen anywhere)         (M1)

eg   cos 2θ = 1 − 2 sin2 θ

correct substitution of identity/working (seen anywhere)      (A1)

eg   \(\frac{{18}}{{1 – \frac{2}{3}\left( {\frac{{1 – {\text{cos}}\,2\theta }}{2}} \right)}},\,\,\frac{{54}}{{3 – 2\left( {\frac{{1 – {\text{cos}}\,2\theta }}{2}} \right)}},\,\,\frac{{18}}{{\frac{{3 – 2\,{\text{si}}{{\text{n}}^2}\,\theta }}{3}}}\)

correct working that clearly leads to the given answer       A1

eg  \(\frac{{18 \times 3}}{{2 + \left( {1 – 2\,{\text{si}}{{\text{n}}^2}\,\theta } \right)}},\,\,\frac{{54}}{{3 – \left( {1 – {\text{cos}}\,2\theta } \right)}}\)

\(\frac{{54}}{{2 + {\text{cos}}\left( {2\theta } \right)}}\)    AG N0

[4 marks]

b.

METHOD 1 (using differentiation)

recognizing \(\frac{{{\text{d}}{S_\infty }}}{{{\text{d}}\theta }} = 0\) (seen anywhere)       (M1)

finding any correct expression for \(\frac{{{\text{d}}{S_\infty }}}{{{\text{d}}\theta }}\)       (A1)

eg  \(\frac{{0 – 54 \times \left( { – 2\,{\text{sin}}\,2\,\theta } \right)}}{{{{\left( {2 + {\text{cos}}\,2\,\theta } \right)}^2}}},\,\, – 54{\left( {2 + {\text{cos}}\,2\,\theta } \right)^{ – 2}}\,\left( { – 2\,{\text{sin}}\,2\,\theta } \right)\)

correct working       (A1)

eg  sin 2θ = 0

any correct value for sin−1(0) (seen anywhere)       (A1)

eg  0, \(\pi \), … , sketch of sine curve with x-intercept(s) marked both correct values for 2θ (ignore additional values)      (A1)

2θ = \(\pi \), 3\(\pi \) (accept values in degrees)

both correct answers \(\theta  = \frac{\pi }{2},\,\frac{{3\pi }}{2}\)      A1 N4

Note: Award A0 if either or both correct answers are given in degrees.
Award A0 if additional values are given.

METHOD 2 (using denominator)

recognizing when S is greatest      (M1)

eg 2 + cos 2θ is a minimum, 1−r is smallest
correct working      (A1)

eg  minimum value of 2 + cos 2θ is 1, minimum r = \(\frac{2}{3}\)

correct working      (A1)

eg  \({\text{cos}}\,2\,\theta  =  – 1,\,\,\frac{2}{3}\,{\text{si}}{{\text{n}}^2}\,\theta  = \frac{2}{3},\,\,{\text{si}}{{\text{n}}^2}\theta  = 1\)

EITHER (using cos 2θ)

any correct value for cos−1(−1) (seen anywhere)      (A1)

eg  \(\pi \), 3\(\pi \), … (accept values in degrees), sketch of cosine curve with x-intercept(s) marked

both correct values for 2θ  (ignore additional values)      (A1)

2θ = \(\pi \), 3\(\pi \) (accept values in degrees)

OR (using sinθ)

sinθ = ±1     (A1)

sin−1(1) = \(\frac{\pi }{2}\) (accept values in degrees) (seen anywhere)      A1

THEN

both correct answers \(\theta  = \frac{\pi }{2},\,\frac{{3\pi }}{2}\)       A1 N4

Note: Award A0 if either or both correct answers are given in degrees.
Award A0 if additional values are given.

[6 marks]

c.
Scroll to Top