IB DP Maths Topic 3.2 Exact values of trigonometric ratios of 0, π/6, π/4, π/3, π/2 and their multiples SL Paper 1

Question

Let \(f(x) = {{\rm{e}}^{ – 3x}}\) and \(g(x) = \sin \left( {x – \frac{\pi }{3}} \right)\) .

Write down

(i)     \(f'(x)\) ;

(ii)    \(g'(x)\) .

[2]
a.

Let \(h(x) = {{\rm{e}}^{ – 3x}}\sin \left( {x – \frac{\pi }{3}} \right)\) . Find the exact value of \(h’\left( {\frac{\pi }{3}} \right)\) .

[4]
b.
Answer/Explanation

Markscheme

(i) \( – 3{{\rm{e}}^{ – 3x}}\)     A1     N1

(ii) \(\cos \left( {x – \frac{\pi }{3}} \right)\)     A1     N1

[4 marks]

a.

evidence of choosing product rule     (M1)

e.g. \(uv’ + vu’\)

correct expression     A1

e.g. \( – 3{{\rm{e}}^{ – 3x}}\sin \left( {x – \frac{\pi }{3}} \right) + {{\rm{e}}^{ – 3x}}\cos \left( {x – \frac{\pi }{3}} \right)\)

complete correct substitution of \(x = \frac{\pi }{3}\)     (A1)

e.g. \( – 3{{\rm{e}}^{ – 3\frac{\pi }{3}}}\sin \left( {\frac{\pi }{3} – \frac{\pi }{3}} \right) + {{\rm{e}}^{ – 3\frac{\pi }{3}}}\cos \left( {\frac{\pi }{3} – \frac{\pi }{3}} \right)\)        

\(h’\left( {\frac{\pi }{3}} \right) = {{\rm{e}}^{ – \pi }}\)     A1     N3

[4 marks]

b.

Question

Let \(f(x) = \frac{{\cos x}}{{\sin x}}\) , for \(\sin x \ne 0\) .

In the following table, \(f’\left( {\frac{\pi }{2}} \right) = p\) and \(f”\left( {\frac{\pi }{2}} \right) = q\) . The table also gives approximate values of \(f'(x)\) and \(f”(x)\) near \(x = \frac{\pi }{2}\) .


Use the quotient rule to show that \(f'(x) = \frac{{ – 1}}{{{{\sin }^2}x}}\) .

[5]
a.

Find \(f”(x)\) .

[3]
b.

Find the value of p and of q.

[3]
c.

Use information from the table to explain why there is a point of inflexion on the graph of f where \(x = \frac{\pi }{2}\) .

[2]
d.
Answer/Explanation

Markscheme

\(\frac{{\rm{d}}}{{{\rm{d}}x}}\sin x = \cos x\) , \(\frac{{\rm{d}}}{{{\rm{d}}x}}\cos x = – \sin x\) (seen anywhere)     (A1)(A1)

evidence of using the quotient rule     M1

correct substitution     A1

e.g. \(\frac{{\sin x( – \sin x) – \cos x(\cos x)}}{{{{\sin }^2}x}}\) , \(\frac{{ – {{\sin }^2}x – {{\cos }^2}x}}{{{{\sin }^2}x}}\)

\(f'(x) = \frac{{ – ({{\sin }^2}x + {{\cos }^2}x)}}{{{{\sin }^2}x}}\)     A1

\(f'(x) = \frac{{ – 1}}{{{{\sin }^2}x}}\)     AG      N0

[5 marks]

a.

METHOD 1

appropriate approach     (M1)

e.g. \(f'(x) = – {(\sin x)^{ – 2}}\)

\(f”(x) = 2({\sin ^{ – 3}}x)(\cos x)\) \(\left( { = \frac{{2\cos x}}{{{{\sin }^3}x}}} \right)\)     A1A1     N3

Note: Award A1 for \(2{\sin ^{ – 3}}x\) , A1 for \(\cos x\) .

METHOD 2

derivative of \({\sin ^2}x = 2\sin x\cos x\) (seen anywhere)     A1

evidence of choosing quotient rule     (M1)

e.g. \(u = – 1\) ,  \(v = {\sin ^2}x\) , \(f” = \frac{{{{\sin }^2}x \times 0 – ( – 1)2\sin x\cos x}}{{{{({{\sin }^2}x)}^2}}}\)

\(f”(x) = \frac{{2\sin x\cos x}}{{{{({{\sin }^2}x)}^2}}}\) \(\left( { = \frac{{2\cos x}}{{{{\sin }^3}x}}} \right)\)     A1     N3

[3 marks]

b.

evidence of substituting \(\frac{\pi }{2}\)     M1

e.g. \(\frac{{ – 1}}{{{{\sin }^2}\frac{\pi }{2}}}\) , \(\frac{{2\cos \frac{\pi }{2}}}{{{{\sin }^3}\frac{\pi }{2}}}\)

\(p = – 1\) ,  \(q = 0\)    A1A1     N1N1

[3 marks]

c.

second derivative is zero, second derivative changes sign     R1R1     N2

[2 marks]

d.

Question

Let \(f(x) = \cos 2x\) and \(g(x) = 2{x^2} – 1\) .

Find \(f\left( {\frac{\pi }{2}} \right)\) .

[2]
a.

Find \((g \circ f)\left( {\frac{\pi }{2}} \right)\) .

[2]
b.

Given that \((g \circ f)(x)\) can be written as \(\cos (kx)\) , find the value of k, \(k \in \mathbb{Z}\) .

[3]
c.
Answer/Explanation

Markscheme

\(f\left( {\frac{\pi }{2}} \right) = \cos \pi \)     (A1)

\( = – 1\)     A1     N2

[2 marks]

a.

\((g \circ f)\left( {\frac{\pi }{2}} \right) = g( – 1)\) \(( = 2{( – 1)^2} – 1)\)    (A1)

\(= 1\)     A1     N2

[2 marks]

b.

\((g \circ f)(x) = 2{(\cos (2x))^2} – 1\) \(( = 2{\cos ^2}(2x) – 1)\)     A1

evidence of \(2{\cos ^2}\theta – 1 = \cos 2\theta \) (seen anywhere)     (M1)

\((g \circ f)(x) = \cos 4x\)

\(k = 4\)     A1     N2

[3 marks]

c.

Question

Let \(h(x) = \frac{{6x}}{{\cos x}}\) . Find \(h'(0)\) .

Answer/Explanation

Markscheme

METHOD 1 (quotient)

derivative of numerator is 6     (A1)

derivative of denominator is \( – \sin x\)     (A1)

attempt to substitute into quotient rule     (M1)

correct substitution     A1

e.g. \(\frac{{(\cos x)(6) – (6x)( – \sin x)}}{{{{(\cos x)}^2}}}\)

substituting \(x = 0\)     (A1)

e.g. \(\frac{{(\cos 0)(6) – (6 \times 0)( – \sin 0)}}{{{{(\cos 0)}^2}}}\)

\(h'(0) = 6\)     A1     N2

METHOD 2 (product)

\(h(x) = 6x \times {(\cos x)^{ – 1}}\)

derivative of 6x is 6     (A1)

derivative of \({(\cos x)^{ – 1}}\) is \(( – {(\cos x)^{ – 2}}( – \sin x))\)     (A1)

attempt to substitute into product rule     (M1)

correct substitution     A1

e.g. \((6x)( – {(\cos x)^{ – 2}}( – \sin x)) + (6){(\cos x)^{ – 1}}\)

substituting \(x = 0\)    (A1)

e.g. \((6 \times 0)( – {(\cos 0)^{ – 2}}( – \sin 0)) + (6){(\cos 0)^{ – 1}}\)

\(h'(0) = 6\)     A1     N2

[6 marks]

Question

Let \(\int_\pi ^a {\cos 2x{\text{d}}x}  = \frac{1}{2}{\text{, where }}\pi  < a < 2\pi \). Find the value of \(a\).

Answer/Explanation

Markscheme

correct integration (ignore absence of limits and “\(+C\)”)     (A1)

eg     \(\frac{{\sin (2x)}}{2},{\text{ }}\int_\pi ^a {\cos 2x = \left[ {\frac{1}{2}\sin (2x)} \right]_\pi ^a} \)

substituting limits into their integrated function and subtracting (in any order)     (M1)

eg     \(\frac{1}{2}\sin (2a) – \frac{1}{2}\sin (2\pi ),{\text{ }}\sin (2\pi ) – \sin (2a)\)

\(\sin (2\pi ) = 0\)     (A1)

setting their result from an integrated function equal to \(\frac{1}{2}\)     M1

eg     \(\frac{1}{2}\sin 2a = \frac{1}{2},{\text{ }}\sin (2a) = 1\)

recognizing \({\sin ^{ – 1}}1 = \frac{\pi }{2}\)     (A1)

eg     \(2a = \frac{\pi }{2},{\text{ }}a = \frac{\pi }{4}\)

correct value     (A1)

eg     \(\frac{\pi }{2} + 2\pi ,{\text{ }}2a = \frac{{5\pi }}{2},{\text{ }}a = \frac{\pi }{4} + \pi \)

\(a = \frac{{5\pi }}{4}\)     A1     N3

[7 marks]

Question

The following diagram shows a triangle ABC and a sector BDC of a circle with centre B and radius 6 cm. The points A , B and D are on the same line.

M16/5/MATME/SP1/ENG/TZ2/05

\({\text{AB}} = 2\sqrt 3 {\text{ cm, BC}} = 6{\text{ cm, area of triangle ABC}} = 3\sqrt 3{\text{ c}}{{\text{m}}^{\text{2}}}{\rm{, A\hat BC}}\) is obtuse.

Find \({\rm{A\hat BC}}\).

[5]
a.

Find the exact area of the sector BDC.

[3]
b.
Answer/Explanation

Markscheme

METHOD 1

correct substitution into formula for area of triangle     (A1)

eg\(\,\,\,\,\,\)\(\frac{1}{2}(6)\left( {2\sqrt 3 } \right)\sin B,{\text{ }}6\sqrt 3 \sin B,{\text{ }}\frac{1}{2}(6)\left( {2\sqrt 3 } \right)\sin B = 3\sqrt 3 \)

correct working     (A1)

eg\(\,\,\,\,\,\)\(6\sqrt 3 \sin B = 3\sqrt 3 ,{\text{ }}\sin B = \frac{{3\sqrt 3 }}{{\frac{1}{2}(6)2\sqrt 3 }}\)

\(\sin B = \frac{1}{2}\)    (A1)

\(\frac{\pi }{6}(30^\circ )\)    (A1)

\({\rm{A\hat BC}} = \frac{{5\pi }}{6}(150^\circ )\)     A1     N3

METHOD 2

(using height of triangle ABC by drawing perpendicular segment from C to AD)

correct substitution into formula for area of triangle     (A1)

eg\(\,\,\,\,\,\)\(\frac{1}{2}\left( {2\sqrt 3 } \right)(h) = 3\sqrt 3 ,{\text{ }}h\sqrt 3 \)

correct working     (A1)

eg\(\,\,\,\,\,\)\(h\sqrt 3  = 3\sqrt 3 \)

height of triangle is 3     A1

\({\rm{C\hat BD}} = \frac{\pi }{6}(30^\circ )\)    (A1)

\({\rm{A\hat BC}} = \frac{{5\pi }}{6}(150^\circ )\)     A1     N3

[5 marks]

a.

recognizing supplementary angle     (M1)

eg\(\,\,\,\,\,\)\({\rm{C\hat BD}} = \frac{\pi }{6},{\text{ sector}} = \frac{1}{2}(180 – {\rm{A\hat BC)(}}{{\text{6}}^2})\)

correct substitution into formula for area of sector     (A1)

eg\(\,\,\,\,\,\)\(\frac{1}{2} \times \frac{\pi }{6} \times {6^2},{\text{ }}\pi ({6^2})\left( {\frac{{30}}{{360}}} \right)\)

\({\text{area}} = 3\pi {\text{ }}({\text{c}}{{\text{m}}^2})\)     A1     N2

[3 marks]

b.

Question

The following diagram shows triangle PQR.

M17/5/MATME/SP1/ENG/TZ1/03

Find PR.

Answer/Explanation

Markscheme

METHOD 1 

evidence of choosing the sine rule     (M1)

eg\(\,\,\,\,\,\)\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)

correct substitution     A1

eg\(\,\,\,\,\,\)\(\frac{x}{{\sin 30}} = \frac{{13}}{{\sin 45}},{\text{ }}\frac{{13\sin 30}}{{\sin 45}}\)

\(\sin 30 = \frac{1}{2},{\text{ }}\sin 45 = \frac{1}{{\sqrt 2 }}\)     (A1)(A1)

correct working     A1

eg\(\,\,\,\,\,\)\(\frac{1}{2} \times \frac{{13}}{{\frac{1}{{\sqrt 2 }}}},{\text{ }}\frac{1}{2} \times 13 \times \frac{2}{{\sqrt 2 }},{\text{ }}13 \times \frac{1}{2} \times \sqrt 2 \)

correct answer     A1     N3

eg\(\,\,\,\,\,\)\({\text{PR}} = \frac{{13\sqrt 2 }}{2},{\text{ }}\frac{{13}}{{\sqrt 2 }}{\text{ (cm)}}\)

METHOD 2 (using height of ΔPQR)

valid approach to find height of ΔPQR     (M1)

eg\(\,\,\,\,\,\)\(\sin 30 = \frac{x}{{13}},{\text{ }}\cos 60 = \frac{x}{{13}}\)

\(\sin 30 = \frac{1}{2}{\text{ or }}\cos 60 = \frac{1}{2}\)     (A1)

\({\text{height}} = 6.5\)     A1

correct working     A1

eg\(\,\,\,\,\,\)\(\sin 45 = \frac{{6.5}}{{{\text{PR}}}},{\text{ }}\sqrt {{{6.5}^2} + {{6.5}^2}} \)

correct working     (A1)

eg\(\,\,\,\,\,\)\(\sin 45 = \frac{1}{{\sqrt 2 }},{\text{ }}\cos 45 = \frac{1}{{\sqrt 2 }},{\text{ }}\sqrt {\frac{{169 \times 2}}{4}} \)

correct answer     A1     N3

eg\(\,\,\,\,\,\)\({\text{PR}} = \frac{{13\sqrt 2 }}{2},{\text{ }}\frac{{13}}{{\sqrt 2 }}{\text{ (cm)}}\)

[6 marks]

Question

The following table shows the probability distribution of a discrete random variable \(A\), in terms of an angle \(\theta \).

M17/5/MATME/SP1/ENG/TZ1/10

Show that \(\cos \theta  = \frac{3}{4}\).

[6]
a.

Given that \(\tan \theta  > 0\), find \(\tan \theta \).

[3]
b.

Let \(y = \frac{1}{{\cos x}}\), for \(0 < x < \frac{\pi }{2}\). The graph of \(y\)between \(x = \theta \) and \(x = \frac{\pi }{4}\) is rotated 360° about the \(x\)-axis. Find the volume of the solid formed.

[6]
c.
Answer/Explanation

Markscheme

evidence of summing to 1     (M1)

eg\(\,\,\,\,\,\)\(\sum {p = 1} \)

correct equation     A1

eg\(\,\,\,\,\,\)\(\cos \theta  + 2\cos 2\theta  = 1\)

correct equation in \(\cos \theta \)     A1

eg\(\,\,\,\,\,\)\(\cos \theta  + 2(2{\cos ^2}\theta  – 1) = 1,{\text{ }}4{\cos ^2}\theta  + \cos \theta  – 3 = 0\)

evidence of valid approach to solve quadratic     (M1)

eg\(\,\,\,\,\,\)factorizing equation set equal to \(0,{\text{ }}\frac{{ – 1 \pm \sqrt {1 – 4 \times 4 \times ( – 3)} }}{8}\)

correct working, clearly leading to required answer     A1

eg\(\,\,\,\,\,\)\((4\cos \theta  – 3)(\cos \theta  + 1),{\text{ }}\frac{{ – 1 \pm 7}}{8}\)

correct reason for rejecting \(\cos \theta  \ne  – 1\)     R1

eg\(\,\,\,\,\,\)\(\cos \theta \) is a probability (value must lie between 0 and 1), \(\cos \theta  > 0\)

Note:     Award R0 for \(\cos \theta  \ne  – 1\) without a reason.

\(\cos \theta  = \frac{3}{4}\)    AG  N0

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)sketch of right triangle with sides 3 and 4, \({\sin ^2}x + {\cos ^2}x = 1\)

correct working     

(A1)

eg\(\,\,\,\,\,\)missing side \( = \sqrt 7 ,{\text{ }}\frac{{\frac{{\sqrt 7 }}{4}}}{{\frac{3}{4}}}\)

\(\tan \theta  = \frac{{\sqrt 7 }}{3}\)     A1     N2

[3 marks]

b.

attempt to substitute either limits or the function into formula involving \({f^2}\)     (M1)

eg\(\,\,\,\,\,\)\(\pi \int_\theta ^{\frac{\pi }{4}} {{f^2},{\text{ }}\int {{{\left( {\frac{1}{{\cos x}}} \right)}^2}} } \)

correct substitution of both limits and function     (A1)

eg\(\,\,\,\,\,\)\(\pi \int_\theta ^{\frac{\pi }{4}} {{{\left( {\frac{1}{{\cos x}}} \right)}^2}{\text{d}}x} \)

correct integration     (A1)

eg\(\,\,\,\,\,\)\(\tan x\)

substituting their limits into their integrated function and subtracting     (M1)

eg\(\,\,\,\,\,\)\(\tan \frac{\pi }{4} – \tan \theta \)

Note:     Award M0 if they substitute into original or differentiated function.

\(\tan \frac{\pi }{4} = 1\)    (A1)

eg\(\,\,\,\,\,\)\(1 – \tan \theta \)

\(V = \pi  – \frac{{\pi \sqrt 7 }}{3}\)     A1     N3

[6 marks]

c.

Question

The first two terms of an infinite geometric sequence are u1 = 18 and u2 = 12sin2 θ , where 0 < θ < 2\(\pi \) , and θ ≠ \(\pi \).

Find an expression for r in terms of θ.

[2]
a.i.

Find the possible values of r.

[3]
a.ii.

Show that the sum of the infinite sequence is \(\frac{{54}}{{2 + {\text{cos}}\,\left( {2\theta } \right)}}\).

[4]
b.

Find the values of θ which give the greatest value of the sum.

[6]
c.
Answer/Explanation

Markscheme

valid approach     (M1)

eg   \(\frac{{{u_2}}}{{{u_1}}},\,\,\frac{{{u_1}}}{{{u_2}}}\)

\(r = \frac{{12\,{{\sin }^2}\,\theta }}{{18}}\left( { = \frac{{2\,{{\sin }^2}\,\theta }}{3}} \right)\)      A1 N2

[2 marks]

a.i.

recognizing that sinθ is bounded      (M1)

eg    0 sin2 θ ≤ 1, −1 ≤ sinθ ≤ 1, −1 < sinθ < 1

0 < r ≤ \(\frac{2}{3}\)      A2 N3

Note: If working shown, award M1A1 for correct values with incorrect inequality sign(s).
If no working shown, award N1 for correct values with incorrect inequality sign(s).

[3 marks]

a.ii.

correct substitution into formula for infinite sum       A1

eg  \(\frac{{18}}{{1 – \frac{{2\,{\text{si}}{{\text{n}}^2}\,\theta }}{3}}}\)

evidence of choosing an appropriate rule for cos 2θ (seen anywhere)         (M1)

eg   cos 2θ = 1 − 2 sin2 θ

correct substitution of identity/working (seen anywhere)      (A1)

eg   \(\frac{{18}}{{1 – \frac{2}{3}\left( {\frac{{1 – {\text{cos}}\,2\theta }}{2}} \right)}},\,\,\frac{{54}}{{3 – 2\left( {\frac{{1 – {\text{cos}}\,2\theta }}{2}} \right)}},\,\,\frac{{18}}{{\frac{{3 – 2\,{\text{si}}{{\text{n}}^2}\,\theta }}{3}}}\)

correct working that clearly leads to the given answer       A1

eg  \(\frac{{18 \times 3}}{{2 + \left( {1 – 2\,{\text{si}}{{\text{n}}^2}\,\theta } \right)}},\,\,\frac{{54}}{{3 – \left( {1 – {\text{cos}}\,2\theta } \right)}}\)

\(\frac{{54}}{{2 + {\text{cos}}\left( {2\theta } \right)}}\)    AG N0

[4 marks]

b.

METHOD 1 (using differentiation)

recognizing \(\frac{{{\text{d}}{S_\infty }}}{{{\text{d}}\theta }} = 0\) (seen anywhere)       (M1)

finding any correct expression for \(\frac{{{\text{d}}{S_\infty }}}{{{\text{d}}\theta }}\)       (A1)

eg  \(\frac{{0 – 54 \times \left( { – 2\,{\text{sin}}\,2\,\theta } \right)}}{{{{\left( {2 + {\text{cos}}\,2\,\theta } \right)}^2}}},\,\, – 54{\left( {2 + {\text{cos}}\,2\,\theta } \right)^{ – 2}}\,\left( { – 2\,{\text{sin}}\,2\,\theta } \right)\)

correct working       (A1)

eg  sin 2θ = 0

any correct value for sin−1(0) (seen anywhere)       (A1)

eg  0, \(\pi \), … , sketch of sine curve with x-intercept(s) marked both correct values for 2θ (ignore additional values)      (A1)

2θ = \(\pi \), 3\(\pi \) (accept values in degrees)

both correct answers \(\theta  = \frac{\pi }{2},\,\frac{{3\pi }}{2}\)      A1 N4

Note: Award A0 if either or both correct answers are given in degrees.
Award A0 if additional values are given.

METHOD 2 (using denominator)

recognizing when S is greatest      (M1)

eg 2 + cos 2θ is a minimum, 1−r is smallest
correct working      (A1)

eg  minimum value of 2 + cos 2θ is 1, minimum r = \(\frac{2}{3}\)

correct working      (A1)

eg  \({\text{cos}}\,2\,\theta  =  – 1,\,\,\frac{2}{3}\,{\text{si}}{{\text{n}}^2}\,\theta  = \frac{2}{3},\,\,{\text{si}}{{\text{n}}^2}\theta  = 1\)

EITHER (using cos 2θ)

any correct value for cos−1(−1) (seen anywhere)      (A1)

eg  \(\pi \), 3\(\pi \), … (accept values in degrees), sketch of cosine curve with x-intercept(s) marked

both correct values for 2θ  (ignore additional values)      (A1)

2θ = \(\pi \), 3\(\pi \) (accept values in degrees)

OR (using sinθ)

sinθ = ±1     (A1)

sin−1(1) = \(\frac{\pi }{2}\) (accept values in degrees) (seen anywhere)      A1

THEN

both correct answers \(\theta  = \frac{\pi }{2},\,\frac{{3\pi }}{2}\)       A1 N4

Note: Award A0 if either or both correct answers are given in degrees.
Award A0 if additional values are given.

[6 marks]

c.

Question

The expression \(6\sin x\cos x\) can be expressed in the form \(a\sin bx\) .

Find the value of a and of b .

[3]
a.

Hence or otherwise, solve the equation \(6\sin x\cos x = \frac{3}{2}\) , for \(\frac{\pi }{4} \le x \le \frac{\pi }{2}\) .

[4]
b.
Answer/Explanation

Markscheme

recognizing double angle     M1

e.g. \(3 \times 2\sin x\cos x\) , \(3\sin 2x\)

\(a = 3\) , \(b = 2\)     A1A1     N3

[3 marks]

a.

substitution \(3\sin 2x = \frac{3}{2}\)     M1

\(\sin 2x = \frac{1}{2}\)     A1

finding the angle     A1

e.g. \(\frac{\pi }{6}\) , \(2x = \frac{{5\pi }}{6}\)

\(x = \frac{{5\pi }}{{12}}\)     A1     N2

Note: Award A0 if other values are included.

[4 marks]

b.

Question

Let \(f(x) = \cos x + \sqrt 3 \sin x\) , \(0 \le x \le 2\pi \) . The following diagram shows the graph of \(f\) .


The \(y\)-intercept is at (\(0\), \(1\)) , there is a minimum point at A (\(p\), \(q\)) and a maximum point at B.

Find \(f'(x)\) .

[2]
a.

Hence

(i)     show that \(q = – 2\) ;

(ii)    verify that A is a minimum point.

[10]
b(i) and (ii).

Find the maximum value of \(f(x)\) .

[3]
c.

The function \(f(x)\) can be written in the form \(r\cos (x – a)\) .

Write down the value of r and of a .

[2]
d.
Answer/Explanation

Markscheme

\(f'(x) = – \sin x + \sqrt 3 \cos x\)     A1A1     N2

[2 marks]

a.

(i) at A, \(f'(x) = 0\)     R1

correct working     A1

e.g. \(\sin x = \sqrt 3 \cos x\)

\(\tan x = \sqrt 3 \)     A1

\(x = \frac{\pi }{3}\) , \(\frac{{4\pi }}{3}\)     A1

attempt to substitute their x into \(f(x)\)     M1

e.g. \(\cos \left( {\frac{{4\pi }}{3}} \right) + \sqrt 3 \sin \left( {\frac{{4\pi }}{3}} \right)\)

correct substitution     A1

e.g. \( – \frac{1}{2} + \sqrt 3 \left( { – \frac{{\sqrt 3 }}{2}} \right)\)

correct working that clearly leads to \( – 2\)     A1

e.g. \( – \frac{1}{2} – \frac{3}{2}\)

 \(q = – 2\)     AG     N0

(ii) correct calculations to find \(f'(x)\) either side of \(x = \frac{{4\pi }}{3}\)     A1A1

e.g. \(f'(\pi ) = 0 – \sqrt 3 \) ,  \(f'(2\pi ) = 0 + \sqrt 3 \)   

\(f'(x)\) changes sign from negative to positive     R1

so A is a minimum     AG     N0

[10 marks]

b(i) and (ii).

max when \(x = \frac{\pi }{3}\)     R1

correctly substituting \(x = \frac{\pi }{3}\) into \(f(x)\)     A1

e.g. \(\frac{1}{2} + \sqrt 3 \left( {\frac{{\sqrt 3 }}{2}} \right)\)

max value is 2     A1     N1

[3 marks]

c.

\(r = 2\) , \(a = \frac{\pi }{3}\)     A1A1     N2

[2 marks]

d.
Scroll to Top