IBDP Maths analysis and approaches Topic: AHL 3.10 :Double angle identities for tan HL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f\left( x \right) = {\text{tan}}\left( {x + \pi } \right){\text{cos}}\left( {x – \frac{\pi }{2}} \right)\) where \(0 < x < \frac{\pi }{2}\).

Express \(f\left( x \right)\) in terms of sin \(x\) and cos \(x\).

Answer/Explanation

Markscheme

\({\text{tan}}\left( {x + \pi } \right) = \tan x\left( { = \frac{{{\text{sin}}\,x}}{{{\text{cos}}\,x}}} \right)\)     (M1)A1

\({\text{cos}}\left( {x – \frac{\pi }{2}} \right) = {\text{sin}}\,x\)     (M1)A1

Note: The two M1s can be awarded for observation or for expanding.

\({\text{tan}}\left( {x + \pi } \right) = {\text{cos}}\left( {x – \frac{\pi }{2}} \right) = \frac{{{\text{si}}{{\text{n}}^2}\,x}}{{{\text{cos}}\,x}}\)     A1

[5 marks]

Examiners report

[N/A]
Scroll to Top