IB DP Maths Topic 3.3 Relationship between trigonometric ratios SL Paper 1

Question

Given that \(\cos A = \frac{1}{3}\) and \(0 \le A \le \frac{\pi }{2}\) , find \(\cos 2A\) .

[3]
a.

Given that \(\sin B = \frac{2}{3}\)  and \(\frac{\pi }{2} \le B \le \pi \) , find \(\cos B\) .

[3]
b.
Answer/Explanation

Markscheme

evidence of choosing the formula \(\cos 2A = 2{\cos ^2}A – 1\)     (M1)

Note: If they choose another correct formula, do not award the M1 unless there is evidence of finding \({\sin ^2}A = 1 – \frac{1}{9}\)

correct substitution     A1

 e.g.\(\cos 2A = {\left( {\frac{1}{3}} \right)^2} – \frac{8}{9}\) , \(\cos 2A = 2 \times {\left( {\frac{1}{3}} \right)^2} – 1\)

 \(\cos 2A = – \frac{7}{9}\)     A1     N2

[3 marks]

a.

METHOD 1

evidence of using \({\sin ^2}B + {\cos ^2}B = 1\)     (M1)

e.g. \({\left( {\frac{2}{3}} \right)^2} + {\cos ^2}B = 1\) , \(\sqrt {\frac{5}{9}} \) (seen anywhere),

\(\cos B = \pm \sqrt {\frac{5}{9}} \) \(\left( { = \pm \frac{{\sqrt 5 }}{3}} \right)\)     (A1)

 \(\cos B = – \sqrt {\frac{5}{9}} \) \(\left( { = – \frac{{\sqrt 5 }}{3}} \right)\)     A1     N2

METHOD 2

diagram     M1


for finding third side equals \(\sqrt 5 \)     (A1)

\(\cos B = – \frac{{\sqrt 5 }}{3}\)     A1     N2

[3 marks]

b.

Question

Let  \(f(x) = {\sin ^3}x + {\cos ^3}x\tan x,\frac{\pi }{2} < x < \pi \) .

Show that \(f(x) = \sin x\) .

[2]
a.

Let \(\sin x = \frac{2}{3}\) . Show that \(f(2x) = – \frac{{4\sqrt 5 }}{9}\) .

[5]
b.
Answer/Explanation

Markscheme

changing \(\tan x\) into \(\frac{{\sin x}}{{\cos x}}\)     A1

e.g. \({\sin ^3}x + {\cos ^3}x\frac{{\sin x}}{{\cos x}}\)

simplifying     A1

e.g \(\sin x({\sin ^2}x + {\cos ^2}x)\) , \({\sin ^3}x + \sin x – {\sin ^3}x\)

\(f(x) = \sin x\)    AG     N0

[2 marks]

a.

recognizing \(f(2x) = \sin 2x\) , seen anywhere     (A1)

evidence of using double angle identity \(\sin (2x) = 2\sin x\cos x\) , seen anywhere     (M1)

evidence of using Pythagoras with \(\sin x = \frac{2}{3}\)     M1

e.g. sketch of right triangle, \({\sin ^2}x + {\cos ^2}x = 1\)

\(\cos x = – \frac{{\sqrt 5 }}{3}\) (accept \(\frac{{\sqrt 5 }}{3}\) )     (A1)

\(f(2x) = 2\left( {\frac{2}{3}} \right)\left( { – \frac{{\sqrt 5 }}{3}} \right)\)     A1

\(f(2x) = – \frac{{4\sqrt 5 }}{9}\)     AG     N0

[5 marks]

b.

Question

The vertices of the triangle PQR are defined by the position vectors

\(\overrightarrow {{\rm{OP}}}  = \left( {\begin{array}{*{20}{c}}
4\\
{ – 3}\\
1
\end{array}} \right)\) , \(\overrightarrow {{\rm{OQ}}}  = \left( {\begin{array}{*{20}{c}}
3\\
{ – 1}\\
2
\end{array}} \right)\) and \(\overrightarrow {{\rm{OR}}}  = \left( {\begin{array}{*{20}{c}}
6\\
{ – 1}\\
5
\end{array}} \right)\) .

Find

(i)     \(\overrightarrow {{\rm{PQ}}} \) ;

(ii)    \(\overrightarrow {{\rm{PR}}} \) .

[3]
a.

Show that \(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\) .

[7]
b.

(i)     Find \({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}}\) .

(ii)    Hence, find the area of triangle PQR, giving your answer in the form \(a\sqrt 3 \) .

[6]
c.
Answer/Explanation

Markscheme

(i) evidence of approach     (M1)

e.g. \(\overrightarrow {{\rm{PQ}}}  = \overrightarrow {{\rm{PO}}}  + \overrightarrow {{\rm{OQ}}} \) , \({\rm{Q}} – {\rm{P}}\)

\(\overrightarrow {{\rm{PQ}}}  = \left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
1
\end{array}} \right)\)     A1     N2

(ii) \(\overrightarrow {{\rm{PR}}}  = \left( {\begin{array}{*{20}{c}}
2\\
2\\
4
\end{array}} \right)\)     A1     N1

[3 marks]

a.

METHOD 1

choosing correct vectors \(\overrightarrow {{\rm{PQ}}} \) and \(\overrightarrow {{\rm{PR}}} \)    (A1)(A1)

finding \(\overrightarrow {{\rm{PQ}}}  \bullet \overrightarrow {{\rm{PR}}} \) , \(\left| {\overrightarrow {{\rm{PQ}}} } \right|\) , \(\left| {\overrightarrow {{\rm{PR}}} } \right|\)    (A1) (A1)(A1)

\(\overrightarrow {{\rm{PQ}}}  \bullet \overrightarrow {{\rm{PR}}}  = – 2 + 4 + 4( = 6)\)

\(\left| {\overrightarrow {{\rm{PQ}}} } \right| = \sqrt {{{( – 1)}^2} + {2^2} + {1^2}} \) \(\left( { = \sqrt 6 } \right)\) , \(\left| {\overrightarrow {{\rm{PR}}} } \right| = \sqrt {{2^2} + {2^2} + {4^2}} \) \(\left( { = \sqrt {24} } \right)\)

substituting into formula for angle between two vectors     M1

e.g. \(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{6}{{\sqrt 6  \times \sqrt {24} }}\)

simplifying to expression clearly leading to \(\frac{1}{2}\)     A1

e.g. \(\frac{6}{{\sqrt 6  \times 2\sqrt 6 }}\) , \(\frac{6}{{\sqrt {144} }}\) , \(\frac{6}{{12}}\)

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\)     AG     N0

METHOD 2

evidence of choosing cosine rule (seen anywhere)     (M1)

\(\overrightarrow {{\rm{QR}}}  = \left( {\begin{array}{*{20}{c}}
3\\
0\\
3
\end{array}} \right)\)     A1

\(\left| {\overrightarrow {{\rm{QR}}} } \right| = \sqrt {18} \) , \(\left| {\overrightarrow {{\rm{PQ}}} } \right| = \sqrt 6 \) and \(\left| {\overrightarrow {{\rm{PR}}} } \right| = \sqrt {24} \)     (A1)(A1)(A1)

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{{{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt {24} } \right)}^2} – {{\left( {\sqrt {18} } \right)}^2}}}{{2\sqrt 6  \times \sqrt {24} }}\)     A1

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{{6 + 24 – 18}}{{24}}\) \(\left( { = \frac{{12}}{{24}}} \right)\)     A1

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\)      AG     N0

[7 marks]

b.

(i) METHOD 1

evidence of appropriate approach     (M1)

e.g. using \({\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{R}}\widehat {\rm{P}}{\rm{Q + co}}{{\rm{s}}^{\rm{2}}}{\rm{R}}\widehat {\rm{P}}{\rm{Q}} = 1\) , diagram

substituting correctly     (A1)

e.g. \({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}} = \sqrt {1 – {{\left( {\frac{1}{2}} \right)}^2}} \)

\({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}} = \sqrt {\frac{3}{4}} \) \(\left( { = \frac{{\sqrt 3 }}{2}} \right)\)     A1     N3

METHOD 2

since \(\cos \widehat {\rm{P}} = \frac{1}{2}\) , \(\widehat {\rm{P}} = 60^\circ \)     (A1)

evidence of approach

e.g. drawing a right triangle, finding the missing side     (A1)

\(\sin \widehat {\rm{P}} = \frac{{\sqrt 3 }}{2}\)     A1     N3

(ii) evidence of appropriate approach      (M1)

e.g. attempt to substitute into \(\frac{1}{2}ab\sin C\)

correct substitution

e.g. area \( = \frac{1}{2}\sqrt 6  \times \sqrt {24}  \times \frac{{\sqrt 3 }}{2}\)     A1

area \( = 3\sqrt 3 \)     A1     N2

[6 marks]

c.

Question

Let \(\sin \theta  = \frac{2}{{\sqrt {13} }}\) , where \(\frac{\pi }{2} < \theta  < \pi \) .

Find \(\cos \theta \) .

[3]
a.

Find \(\tan 2\theta \) .

[5]
b.
Answer/Explanation

Markscheme

METHOD 1

evidence of choosing \({\sin ^2}\theta  + {\cos ^2}\theta  = 1\)     (M1)

correct working     (A1)

e.g. \({\cos ^2}\theta  = \frac{9}{{13}}\) , \(\cos \theta  =  \pm \frac{3}{{\sqrt {13} }}\) , \(\cos \theta  = \sqrt {\frac{9}{{13}}} \)

\(\cos \theta  = – \frac{3}{{\sqrt {13} }}\)    A1     N2

Note: If no working shown, award N1 for \(\frac{3}{{\sqrt {13} }}\) .

METHOD 2

approach involving Pythagoras’ theorem     (M1)

e.g. \({2^2} + {x^2} = 13\) ,


finding third side equals 3     (A1)

\(\cos \theta  = – \frac{3}{{\sqrt {13} }}\)     A1     N2

Note: If no working shown, award N1 for \(\frac{3}{{\sqrt {13} }}\) .

[3 marks]

a.

correct substitution into \(\sin 2\theta \) (seen anywhere)     (A1)

e.g. \(2\left( {\frac{2}{{\sqrt {13} }}} \right)\left( { – \frac{3}{{\sqrt {13} }}} \right)\)

correct substitution into \(\cos 2\theta \) (seen anywhere)     (A1)

e.g. \({\left( { – \frac{3}{{\sqrt {13} }}} \right)^2} – {\left( {\frac{2}{{\sqrt {13} }}} \right)^2}\) , \(2{\left( { – \frac{3}{{\sqrt {13} }}} \right)^2} – 1\) , \(1 – 2{\left( {\frac{2}{{\sqrt {13} }}} \right)^2}\)

valid attempt to find \(\tan 2\theta \)     (M1)

e.g. \(\frac{{2\left( {\frac{2}{{\sqrt {13} }}} \right)\left( { – \frac{3}{{\sqrt {13} }}} \right)}}{{{{\left( { – \frac{3}{{\sqrt {13} }}} \right)}^2} – {{\left( {\frac{2}{{\sqrt {13} }}} \right)}^2}}}\) , \(\frac{{2\left( { – \frac{2}{3}} \right)}}{{1 – {{\left( { – \frac{2}{3}} \right)}^2}}}\)

correct working     A1

e.g. \(\frac{{\frac{{(2)(2)( – 3)}}{{13}}}}{{\frac{9}{{13}} – \frac{4}{{13}}}}\) , \(\frac{{ – \frac{{12}}{{{{\left( {\sqrt {13} } \right)}^2}}}}}{{\frac{{18}}{{13}} – 1}}\) , \(\frac{{ – \frac{{12}}{{13}}}}{{\frac{5}{{13}}}}\)

\(\tan 2\theta  = – \frac{{12}}{5}\)     A1     N4

Note: If students find answers for \(\cos \theta \) which are not in the range \([ – 1{\text{, }}1]\), award full FT in (b) for correct FT working shown.

[5 marks]

b.

Question

Let \(f(x) = {(\sin x + \cos x)^2}\) .

Show that \(f(x)\) can be expressed as \(1 + \sin 2x\) .

[2]
a.

The graph of f is shown below for \(0 \le x \le 2\pi \) .


Let \(g(x) = 1 + \cos x\) . On the same set of axes, sketch the graph of g for \(0 \le x \le 2\pi \) .

 

[2]
b.

The graph of g can be obtained from the graph of f under a horizontal stretch of scale factor p followed by a translation by the vector \(\left( {\begin{array}{*{20}{c}}
k\\
0
\end{array}} \right)\) .

Write down the value of p and a possible value of k .

[2]
c.
Answer/Explanation

Markscheme

attempt to expand     (M1)

e.g. \((\sin x + \cos x)(\sin x + \cos x)\) ; at least 3 terms

correct expansion     A1

e.g. \({\sin ^2}x + 2\sin x\cos x + {\cos ^2}x\)

\(f(x) = 1 + \sin 2x\)     AG     N0

[2 marks]

a.


     A1A1     N2

Note: Award A1 for correct sinusoidal shape with period \(2\pi \) and range \([0{\text{, }}2]\), A1 for minimum in circle.

b.

\(p = 2\) , \(k = – \frac{\pi }{2}\)     A1A1     N2

[2 marks]

c.

Question

Let \(\sin {100^ \circ } = m\). Find an expression for \(\cos {100^ \circ }\) in terms of m.

[3]
a.

Let \(\sin {100^ \circ } = m\) . Find an expression for \(\tan {100^ \circ }\) in terms of m.

[1]
b.

Let \(\sin {100^ \circ } = m\). Find an expression for \(\sin {200^ \circ }\) in terms of m.

[2]
c.
Answer/Explanation

Markscheme

Note: All answers must be given in terms of m. If a candidate makes an error that means there is no m in their answer, do not award the final A1FT mark.

METHOD 1 

valid approach involving Pythagoras     (M1)

e.g. \({\sin ^2}x + {\cos ^2}x = 1\) , labelled diagram 

correct working (may be on diagram)     (A1)

e.g. \({m^2} + {(\cos 100)^2} = 1\) , \(\sqrt {1 – {m^2}} \)

\(\cos 100 = – \sqrt {1 – {m^2}} \)    A1     N2

[3 marks]

METHOD 2

valid approach involving tan identity     (M1)

e.g. \(\tan  = \frac{{\sin }}{{\cos }}\)

correct working     (A1)

e.g. \(\cos 100 = \frac{{\sin 100}}{{\tan 100}}\)

\(\cos 100 = \frac{m}{{\tan 100}}\)     A1     N2

[3 marks]

a.

METHOD 1

\(\tan 100 = – \frac{m}{{\sqrt {1 – {m^2}} }}\) (accept \(\frac{m}{{ – \sqrt {1 – {m^2}} }}\))     A1     N1

[1 mark] 

METHOD 2

\(\tan 100 = \frac{m}{{\cos 100}}\)     A1     N1

[1 mark]

b.

METHOD 1

valid approach involving double angle formula     (M1)

e.g. \(\sin 2\theta = 2\sin \theta cos\theta \)

\(\sin 200 = – 2m\sqrt {1 – {m^2}} \)  (accept \(2m\left( { – \sqrt {1 – {m^2}} } \right)\))     A1     N2

Note: If candidates find \(\cos 100 = \sqrt {1 – {m^2}} \) , award full FT in parts (b) and (c), even though the values may not have appropriate signs for the angles.

[2 marks]

METHOD 2

valid approach involving double angle formula     (M1)

e.g. \(\sin 2\theta  = 2\sin \theta \cos \theta \) , \(2m \times \frac{m}{{\tan 100}}\)

\(\sin 200 = \frac{{2{m^2}}}{{\tan 100}}( = 2m\cos 100)\)     A1     N2

[2 marks]

c.

Question

The following diagram shows a right-angled triangle, \(\rm{ABC}\), where \(\sin \rm{A} = \frac{5}{{13}}\).

Show that \(\cos A = \frac{{12}}{{13}}\).

[2]
a.

Find \(\cos 2A\).

[3]
b.
Answer/Explanation

Markscheme

METHOD 1

approach involving Pythagoras’ theorem     (M1)

eg     \({5^2} + {x^2} = {13^2}\), labelling correct sides on triangle

finding third side is 12 (may be seen on diagram)     A1

\(\cos A = \frac{{12}}{{13}}\)     AG     N0

METHOD 2

approach involving \({\sin ^2}\theta  + {\cos ^2}\theta  = 1\)     (M1)

eg     \({\left( {\frac{5}{{13}}} \right)^2} + {\cos ^2}\theta  = 1,{\text{ }}{x^2} + \frac{{25}}{{169}} = 1\)

correct working     A1

eg     \({\cos ^2}\theta  = \frac{{144}}{{169}}\)

\(\cos A = \frac{{12}}{{13}}\)     AG     N0

[2 marks]

a.

correct substitution into \(\cos 2\theta \)     (A1)

eg     \(1 – 2{\left( {\frac{5}{{13}}} \right)^2},{\text{ }}2{\left( {\frac{{12}}{{13}}} \right)^2} – 1,{\text{ }}{\left( {\frac{{12}}{{13}}} \right)^2} – {\left( {\frac{5}{{13}}} \right)^2}\)

correct working     (A1)

eg     \(1 – \frac{{50}}{{169}},{\text{ }}\frac{{288}}{{169}} – 1,{\text{ }}\frac{{144}}{{169}} – \frac{{25}}{{169}}\)

\(\cos 2A = \frac{{119}}{{169}}\)     A1     N2

[3 marks]

b.
Scroll to Top