IB DP Maths Topic 3.4 Transformations SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Let \(f(x) = \cos \left( {\frac{\pi }{4}x} \right) + \sin \left( {\frac{\pi }{4}x} \right),{\text{ for }} – 4 \leqslant x \leqslant 4.\)

Sketch the graph of \(f\).

[3]
a.

Find the values of \(x\) where the function is decreasing.

[5]
b.

The function \(f\) can also be written in the form \(f(x) = a\sin \left( {\frac{\pi }{4}(x + c)} \right)\), where \(a \in \mathbb{R}\), and \(0 \leqslant c \leqslant 2\). Find the value of \(a\);

[3]
c(i).

The function \(f\) can also be written in the form \(f(x) = a\sin \left( {\frac{\pi }{4}(x + c)} \right)\), where \(a \in \mathbb{R}\), and \(0 \leqslant c \leqslant 2\). Find the value of \(c\).

[4]
c(ii).
Answer/Explanation

Markscheme


          A1A1A1     N3

Note:     Award A1 for approximately correct sinusoidal shape.

     Only if this A1 is awarded, award the following:

     A1 for correct domain,

     A1 for approximately correct range.

[3 marks]

a.

recognizes decreasing to the left of minimum or right of maximum,

eg     \(f'(x) < 0\)     (R1)

x-values of minimum and maximum (may be seen on sketch in part (a))     (A1)(A1)

eg     \(x =  – 3,{\text{ (1, 1.4)}}\)

two correct intervals     A1A1     N5

eg     \( – 4 < x <  – 3,{\text{ }}1 \leqslant x \leqslant 4;{\text{ }}x <  – 3,{\text{ }}x \geqslant 1\)

[5 marks]

b.

recognizes that \(a\) is found from amplitude of wave     (R1)

y-value of minimum or maximum     (A1)

eg     (−3, −1.41) , (1, 1.41)

\(a = 1.41421\)

\(a = \sqrt 2 {\text{,   (exact), 1.41,}}\)     A1     N3

[3 marks]

c(i).

METHOD 1

recognize that shift for sine is found at x-intercept     (R1)

attempt to find x-intercept    (M1)

eg     \(\cos \left( {\frac{\pi }{4}x} \right) + \sin \left( {\frac{\pi }{4}x} \right) = 0,{\text{ }}x = 3 + 4k,{\text{ }}k \in \mathbb{Z}\)

\(x =  – 1\)     (A1)

\(c = 1\)     A1     N4

 

METHOD 2

attempt to use a coordinate to make an equation     (R1)

eg     \(\sqrt 2 \sin \left( {\frac{\pi }{4}c} \right) = 1,{\text{ }}\sqrt 2 \sin \left( {\frac{\pi }{4}(3 – c)} \right) = 0\)

attempt to solve resulting equation     (M1)

eg     sketch, \(x = 3 + 4k,{\text{ }}k \in \mathbb{Z}\)

\(x =  – 1\)     (A1)

\(c = 1\)     A1     N4

[4 marks]

c(ii).

Question

The following diagram shows part of the graph of \(y = p\sin (qx) + r\).

The point \({\text{A}}\left( {\frac{\pi }{6},{\text{ }}2} \right)\) is a maximum point and the point \({\text{B}}\left( {\frac{\pi }{6},{\text{ }}1} \right)\) is a minimum point.

Find the value of

\(p\);[2]

a.

\(r\);[2]

b.

\(q\).[2]

c.
Answer/Explanation

Markscheme

valid approach     (M1)

eg\(\;\;\;\)\(\frac{{2 – 1}}{2},{\text{ }}2 – 1.5\)

\(p = 0.5\)     A1     N2

[2 marks]

a.

valid approach     (M1)

eg\(\;\;\;\)\(\frac{{1 + 2}}{2}\)

\(r = 1.5\)     A1     N2

[2 marks]

b.

METHOD 1

valid approach (seen anywhere)     M1

eg\(\;\;\;\)\(q = \frac{{2\pi }}{{{\text{period}}}},{\text{ }}\frac{{2\pi }}{{\left( {\frac{{2\pi }}{3}} \right)}}\)

period \( = \frac{{2\pi }}{3}\)\(\;\;\;\)(seen anywhere)     (A1)

\(q = 3\)     A1     N2

METHOD 2

attempt to substitute one point and their values for \(p\) and \(r\) into \(y\)     M1

eg\(\;\;\;\)\(2 = 0.5\sin \left( {q\frac{\pi }{6}} \right) + 1.5,{\text{ }}\frac{\pi }{2} = 0.5\sin (q1) + 1.5\)

correct equation in \(q\)     (A1)

eg\(\;\;\;\)\(q\frac{\pi }{6} = \frac{\pi }{2},{\text{ }}q\frac{\pi }{2} = \frac{{3\pi }}{2}\)

\(q = 3\)     A1     N2

METHOD 3

valid reasoning comparing the graph with that of \(\sin x\)     R1

eg\(\;\;\;\)position of max/min, graph goes faster

correct working     (A1)

eg\(\;\;\;\)max at \(\frac{\pi }{6}\) not at \(\frac{\pi }{2}\), graph goes \(3\) times as fast

\(q = 3\)     A1     N2

[3 marks]

Total [7 marks]

c.

Question

The following diagram shows the graph of \(f(x) = a\sin bx + c\), for \(0 \leqslant x \leqslant 12\).

N16/5/MATME/SP2/ENG/TZ0/10

The graph of \(f\) has a minimum point at \((3,{\text{ }}5)\) and a maximum point at \((9,{\text{ }}17)\).

The graph of \(g\) is obtained from the graph of \(f\) by a translation of \(\left( {\begin{array}{*{20}{c}} k \\ 0 \end{array}} \right)\). The maximum point on the graph of \(g\) has coordinates \((11.5,{\text{ }}17)\).

The graph of \(g\) changes from concave-up to concave-down when \(x = w\).

(i)     Find the value of \(c\).

(ii)     Show that \(b = \frac{\pi }{6}\).

(iii)     Find the value of \(a\).

[6]
a.

(i)     Write down the value of \(k\).

(ii)     Find \(g(x)\).

[3]
b.

(i)     Find \(w\).

(ii)     Hence or otherwise, find the maximum positive rate of change of \(g\).

[6]
c.
Answer/Explanation

Markscheme

(i)     valid approach     (M1)

eg\(\,\,\,\,\,\)\(\frac{{5 + 17}}{2}\)

\(c = 11\)    A1     N2

(ii)     valid approach     (M1)

eg\(\,\,\,\,\,\)period is 12, per \( = \frac{{2\pi }}{b},{\text{ }}9 – 3\)

\(b = \frac{{2\pi }}{{12}}\)    A1

\(b = \frac{\pi }{6}\)     AG     N0

(iii)     METHOD 1

valid approach     (M1)

eg\(\,\,\,\,\,\)\(5 = a\sin \left( {\frac{\pi }{6} \times 3} \right) + 11\), substitution of points

\(a =  – 6\)     A1     N2

METHOD 2

valid approach     (M1)

eg\(\,\,\,\,\,\)\(\frac{{17 – 5}}{2}\), amplitude is 6

\(a =  – 6\)     A1     N2

[6 marks]

a.

(i)     \(k = 2.5\)     A1     N1

(ii)     \(g(x) =  – 6\sin \left( {\frac{\pi }{6}(x – 2.5)} \right) + 11\)     A2     N2

[3 marks]

b.

(i)     METHOD 1 Using \(g\)

recognizing that a point of inflexion is required     M1

eg\(\,\,\,\,\,\)sketch, recognizing change in concavity

evidence of valid approach     (M1)

eg\(\,\,\,\,\,\)\(g”(x) = 0\), sketch, coordinates of max/min on \({g’}\)

\(w = 8.5\) (exact)     A1     N2

METHOD 2 Using \(f\)

recognizing that a point of inflexion is required     M1

eg\(\,\,\,\,\,\)sketch, recognizing change in concavity

evidence of valid approach involving translation     (M1)

eg\(\,\,\,\,\,\)\(x = w – k\), sketch, \(6 + 2.5\)

\(w = 8.5\) (exact)     A1     N2

(ii)     valid approach involving the derivative of \(g\) or \(f\) (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)\(g'(w),{\text{ }} – \pi \cos \left( {\frac{\pi }{6}x} \right)\), max on derivative, sketch of derivative

attempt to find max value on derivative     M1

eg\(\,\,\,\,\,\)\( – \pi \cos \left( {\frac{\pi }{6}(8.5 – 2.5)} \right),{\text{ }}f'(6)\), dot on max of sketch

3.14159

max rate of change \( = \pi \) (exact), 3.14     A1     N2

[6 marks]

c.

Question

The depth of water in a port is modelled by the function \(d(t) = p\cos qt + 7.5\), for \(0 \leqslant t \leqslant 12\), where \(t\) is the number of hours after high tide.

At high tide, the depth is 9.7 metres.

At low tide, which is 7 hours later, the depth is 5.3 metres.

Find the value of \(p\).

[2]
a.

Find the value of \(q\).

[2]
b.

Use the model to find the depth of the water 10 hours after high tide.

[2]
c.
Answer/Explanation

Markscheme

valid approach     (M1)

eg\(\,\,\,\,\,\)\(\frac{{{\text{max}} – {\text{min}}}}{2}\), sketch of graph, \(9.7 = p\cos (0) + 7.5\)

\(p = 2.2\)     A1     N2

[2 marks]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(B = \frac{{2\pi }}{{{\text{period}}}}\), period is \(14,{\text{ }}\frac{{360}}{{14}},{\text{ }}5.3 = 2.2\cos 7q + 7.5\)

0.448798

\(q = \frac{{2\pi }}{{14}}{\text{ }}\left( {\frac{\pi }{7}} \right)\), (do not accept degrees)     A1     N2

[2 marks]

b.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(d(10),{\text{ }}2.2\cos \left( {\frac{{20\pi }}{{14}}} \right) + 7.5\)

7.01045

7.01 (m)     A1     N2

[2 marks]

c.

Question

Let \(f\left( x \right) = 12\,\,{\text{cos}}\,x – 5\,\,{\text{sin}}\,x,\,\, – \pi  \leqslant x \leqslant 2\pi \), be a periodic function with \(f\left( x \right) = f\left( {x + 2\pi } \right)\)

The following diagram shows the graph of \(f\).

There is a maximum point at A. The minimum value of \(f\) is −13 .

A ball on a spring is attached to a fixed point O. The ball is then pulled down and released, so that it moves back and forth vertically.

The distance, d centimetres, of the centre of the ball from O at time t seconds, is given by

\(d\left( t \right) = f\left( t \right) + 17,\,\,0 \leqslant t \leqslant 5.\)

Find the coordinates of A.

[2]
a.

For the graph of \(f\), write down the amplitude.

[1]
b.i.

For the graph of \(f\), write down the period.

[1]
b.ii.

Hence, write \(f\left( x \right)\) in the form \(p\,\,{\text{cos}}\,\left( {x + r} \right)\).

[3]
c.

Find the maximum speed of the ball.

[3]
d.

Find the first time when the ball’s speed is changing at a rate of 2 cm s−2.

[5]
e.
Answer/Explanation

Markscheme

−0.394791,13

A(−0.395, 13)      A1A1 N2

[2 marks]

a.

13      A1 N1

[1 mark]

b.i.

\({2\pi }\), 6.28      A1 N1

[1 mark]

b.ii.

valid approach      (M1)

eg recognizing that amplitude is p or shift is r

\(f\left( x \right) = 13\,\,{\text{cos}}\,\left( {x + 0.395} \right)\)   (accept p = 13, r = 0.395)     A1A1 N3

Note: Accept any value of r of the form \(0.395 + 2\pi k,\,\,k \in \mathbb{Z}\)

[3 marks]

c.

recognizing need for d ′(t)      (M1)

eg  −12 sin(t) − 5 cos(t)

correct approach (accept any variable for t)      (A1)

eg  −13 sin(t + 0.395), sketch of d′, (1.18, −13), t = 4.32

maximum speed = 13 (cms−1)      A1 N2

[3 marks]

d.

recognizing that acceleration is needed      (M1)

eg   a(t), d ”(t)

correct equation (accept any variable for t)      (A1)

eg  \(a\left( t \right) =  – 2,\,\,\left| {\frac{{\text{d}}}{{{\text{d}}t}}\left( {d’\left( t \right)} \right)} \right| = 2,\,\, – 12\,\,{\text{cos}}\,\left( t \right) + 5\,\,{\text{sin}}\,\left( t \right) =  – 2\)

valid attempt to solve their equation   (M1)

eg  sketch, 1.33

1.02154

1.02      A2 N3

[5 marks]

e.
Scroll to Top