Home / IB DP Math AA Topic : AHL 3.9 :The inverse functions: IB Style Questions HL Paper 2

IB DP Math AA Topic : AHL 3.9 :The inverse functions: IB Style Questions HL Paper 2

Question

Farmer Bill owns a rectangular field, 10 m by 4 m. Bill attaches a rope to a wooden post at one corner of his field, and attaches the other end to his goat Gruff.

a.Given that the rope is 5 m long, calculate the percentage of Bill’s field that Gruff is able to graze. Give your answer correct to the nearest integer.[4]

b.Bill replaces Gruff’s rope with another, this time of length \(a,{\text{ }}4 < a < 10\), so that Gruff can now graze exactly one half of Bill’s field.

Show that \(a\) satisfies the equation

\[{a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} – 16}  = 40.\][4]

 

c.Find the value of \(a\).[2]

 
▶️Answer/Explanation

Markscheme

EITHER

area of triangle \( = \frac{1}{2} \times 3 \times 4\;\;\;( = 6)\)     A1

area of sector \( = \frac{1}{2}\arcsin \left( {\frac{4}{5}} \right) \times {5^2}\;\;\;( = 11.5911 \ldots )\)     A1

OR

\(\int_0^4 {\sqrt {25 – {x^2}} {\text{d}}x} \)     M1A1

THEN

total area \( = 17.5911 \ldots {\text{ }}{{\text{m}}^2}\)     (A1)

percentage \( = \frac{{17.5911 \ldots }}{{40}} \times 100 = 44\% \)     A1

[4 marks]

a.

METHOD 1

area of triangle \( = \frac{1}{2} \times 4 \times \sqrt {{a^2} – 16} \)     A1

\(\theta  = \arcsin \left( {\frac{4}{a}} \right)\)     (A1)

area of sector \( = \frac{1}{2}{r^2}\theta  = \frac{1}{2}{a^2}\arcsin \left( {\frac{4}{a}} \right)\)     A1

therefore total area \( = 2\sqrt {{a^2} – 16}  + \frac{1}{2}{a^2}\arcsin \left( {\frac{4}{a}} \right) = 20\)     A1

rearrange to give: \({a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} – 16}  = 40\)     AG

METHOD 2

\(\int_0^4 {\sqrt {{a^2} – {x^2}} {\text{d}}x = 20} \)     M1

use substitution \(x = a\sin \theta ,{\text{ }}\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = a\cos \theta \)

\(\int_0^{\arcsin \left( {\frac{4}{a}} \right)} {{a^2}{{\cos }^2}\theta {\text{d}}\theta  = 20} \)

\(\frac{{{a^2}}}{2}\int_0^{\arcsin \left( {\frac{4}{a}} \right)} {(\cos 2\theta  + 1){\text{d}}\theta  = 20} \)     M1

\({a^2}\left[ {\left( {\frac{{\sin 2\theta }}{2} + \theta } \right)} \right]_0^{\arcsin \left( {\frac{4}{a}} \right)} = 40\)     A1

\({a^2}\left[ {(\sin \theta \cos \theta  + \theta } \right]_0^{\arcsin \left( {\frac{4}{a}} \right)} = 40\)

\({a^2}\arcsin \left( {\frac{4}{a}} \right) + {a^2}\left( {\frac{4}{a}} \right)\sqrt {\left( {1 – {{\left( {\frac{4}{a}} \right)}^2}} \right)}  = 40\)     A1

\({a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} – 16}  = 40\)     AG

[4 marks]

b.

solving using \({\text{GDC}} \Rightarrow a = 5.53{\text{ cm}}\)     A2

[2 marks]

Total [10 marks]

Question

Consider the function \(f\) defined by \(f(x) = 3x\arccos (x)\) where \( – 1 \leqslant x \leqslant 1\).

a.Sketch the graph of \(f\) indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.[3]

b.State the range of \(f\).[2]

c.Solve the inequality \(\left| {3x\arccos (x)} \right| > 1\).[4]

▶️Answer/Explanation

Markscheme

correct shape passing through the origin and correct domain     A1

Note: Endpoint coordinates are not required. The domain can be indicated by \( – 1\) and 1 marked on the axis.

\((0.652,{\text{ }}1.68)\)    A1

two correct intercepts (coordinates not required)     A1

Note: A graph passing through the origin is sufficient for \((0,{\text{ }}0)\).

[3 marks]

a.

\([-9.42,{\text{ }}1.68]{\text{ }}({\text{or }} – 3\pi ,{\text{ }}1.68])\)    A1A1

Note: Award A1A0 for open or semi-open intervals with correct endpoints. Award A1A0 for closed intervals with one correct endpoint.

[2 marks]

b.

attempting to solve either \(\left| {3x\arccos (x)} \right| > 1\) (or equivalent) or \(\left| {3x\arccos (x)} \right| = 1\) (or equivalent) (eg. graphically)     (M1)

\(x =  – 0.189,{\text{ }}0.254,{\text{ }}0.937\)    (A1)

\( – 1 \leqslant x <  – 0.189{\text{ or }}0.254 < x < 0.937\)    A1A1

Note: Award A0 for \(x <  – 0.189\).

[4 marks]

 

 
 
 
Scroll to Top