IB DP Maths Topic 4.1 Algebraic and geometric approaches to →AB=→OB – →OA=b−a SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

In this question, distance is in metres.

Toy airplanes fly in a straight line at a constant speed. Airplane 1 passes through a point A.

Its position, p seconds after it has passed through A, is given by \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
3\\
{ – 4}\\
0
\end{array}} \right) + p\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\) .

(i)     Write down the coordinates of A.

(ii)    Find the speed of the airplane in \({\text{m}}{{\text{s}}^{ – 1}}\).

[4]
a(i) and (ii).

After seven seconds the airplane passes through a point B.

(i)     Find the coordinates of B.

(ii)    Find the distance the airplane has travelled during the seven seconds.

[5]
b(i) and (ii).

Airplane 2 passes through a point C. Its position q seconds after it passes through C is given by \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
{ – 5}\\
8
\end{array}} \right) + q\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right),a \in \mathbb{R}\) .

The angle between the flight paths of Airplane 1 and Airplane 2 is \({40^ \circ }\) . Find the two values of a.

[7]
c.
Answer/Explanation

Markscheme

(i) (3, \( – 4\), 0)     A1     N1

(ii) choosing velocity vector \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\)     (M1)

finding magnitude of velocity vector     (A1)

e.g. \(\sqrt {{{( – 2)}^2} + {3^2} + {1^2}} \) , \(\sqrt {4 + 9 + 1} \)

speed \(= 3.74\) \(\left( {\sqrt {14} } \right)\)     A1     N2

[4 marks]

a(i) and (ii).

(i) substituting \(p = 7\)     (M1)

\({\text{B}} = ( – 11{\text{, }}17{\text{, }}7)\)     A1     N2

(ii) METHOD 1

appropriate method to find \(\overrightarrow {{\rm{AB}}} \) or \(\overrightarrow {{\rm{BA}}} \)     (M1)

e.g. \(\overrightarrow {{\rm{AO}}}  + \overrightarrow {{\rm{OB}}} \) , \({\rm{A}} – {\rm{B}}\)

\(\overrightarrow {{\rm{AB}}}  = \left( {\begin{array}{*{20}{c}}
{ – 14}\\
{21}\\
7
\end{array}} \right)\) or \(\overrightarrow {{\rm{BA}}}  = \left( {\begin{array}{*{20}{c}}
{14}\\
{ – 21}\\
{ – 7}
\end{array}} \right)\)     (A1)

distance \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

METHOD 2

evidence of applying distance is speed × time     (M2)

e.g. \(3.74 \times 7\)

distance \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

METHOD 3

attempt to find AB2 , AB     (M1)

e.g. \({(3 – ( – 11))^2} + {( – 4 – 17)^2} + (0 – 7){)^2}\) , \(\sqrt {{{(3 – ( – 11))}^2} + {{( – 4 – 17)}^2} + (0 – 7){)^2}} \)

AB2 \(= 686\), AB \(= \sqrt {686} \)     (A1)

distance AB \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

[5 marks]

b(i) and (ii).

correct direction vectors \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right)\)     (A1)(A1)

\(\left| {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right| = \sqrt {{a^2} + 5} \) , \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right) = a + 8\)      (A1)(A1)

substituting     M1

e.g. \(\cos {40^ \circ } = \frac{{a + 8}}{{\sqrt {14} \sqrt {{a^2} + 5} }}\)

\(a = 3.21\) , \(a = – 0.990\)     A1A1     N3

[7 marks]

c.

Question

Line \({L_1}\) passes through points \({\text{A}}(1{\text{, }} – 1{\text{, }}4)\) and \({\text{B}}(2{\text{, }} – 2{\text{, }}5)\) .

Line \({L_2}\) has equation \({\boldsymbol{r}} = \left( \begin{array}{l}
2\\
4\\
7
\end{array} \right) + s\left( \begin{array}{l}
2\\
1\\
3
\end{array} \right)\) .

Find \(\overrightarrow {{\rm{AB}}} \) .

[2]
a.

Find an equation for \({L_1}\) in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\) .

[2]
b.

Find the angle between \({L_1}\) and \({L_2}\) .

[7]
c.

The lines \({L_1}\) and \({L_2}\) intersect at point C. Find the coordinates of C.

[6]
d.
Answer/Explanation

Markscheme

appropriate approach     (M1)

e.g. \(\overrightarrow {{\rm{AO}}} + \overrightarrow {{\rm{OB}}} \) , \(B – A\)

\(\overrightarrow {{\rm{AB}}} = \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\)     A1     N2

[2 marks]

a.

any correct equation in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\)     A2 N2

where \({\boldsymbol{b}}\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\)

e.g. \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
4
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
{2 + t}\\
{ – 2 – t}\\
{5 + t}
\end{array}} \right)\) , \({\boldsymbol{r}} = 2{\boldsymbol{i}} – 2{\boldsymbol{j}} + 5{\boldsymbol{k}} + t({\boldsymbol{i}} – {\boldsymbol{j}} + {\boldsymbol{k}})\)

 [2 marks]

b.

choosing correct direction vectors \(\left( \begin{array}{l}
2\\
1\\
3
\end{array} \right)\) , \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\)     (A1)(A1)

finding scalar product and magnitudes     (A1)(A1)(A1)

scalar product \( = 1 \times 2 + – 1 \times 1 + 1 \times 3\) \(\left( { = 4} \right)\)

magnitudes \(\sqrt {{1^2} + {{( – 1)}^2} + {1^2}}{\text{  }}( = 1.73 \ldots )\) , \(\sqrt {4 + 1 + 9}{\text{  }}( = 3.74 \ldots )\)

substitution into \(\frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) (accept \(\theta = \frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) , but not \(\sin \theta = \frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) )     M1

e.g. \(\cos \theta = \frac{{1 \times 2 + – 1 \times 1 + 1 \times 3}}{{\sqrt {{1^2} + {{( – 1)}^2} + {1^2}} \sqrt {{2^2} + {1^2} + {3^2}} }}\) , \(\cos \theta = \frac{4}{{\sqrt {42} }}\)

\(\theta = 0.906\) \(({51.9^ \circ })\)     A1      N5

[7 marks]

c.

METHOD 1 (from \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  4
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  1
\end{array}} \right)\) )

appropriate approach     (M1)

e.g. \({\boldsymbol{p}} = {\boldsymbol{r}}\) , \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
4
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)t = \left( {\begin{array}{*{20}{c}}
2\\
4\\
7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2\\
1\\
3
\end{array}} \right)s\)

two correct equations    A1A1

e.g. \(1 + t = 2 + 2s\) , \( – 1 – t = 4 + s\) , \(4 + t = 7 + 3s\)

attempt to solve     (M1)

one correct parameter     A1

e.g. \(t = – 3\) , \(s = – 2\)

C is \(( – 2{\text{, }}2{\text{, }}1)\)     A1     N3

METHOD 2 (from \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
  2 \\
  { – 2} \\
  5
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  1
\end{array}} \right)\) )

appropriate approach     (M1)

e.g. \({\boldsymbol{p}} = {\boldsymbol{r}}\) , \(\left( {\begin{array}{*{20}{c}}
2\\
{ – 2}\\
5
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
4\\
7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2\\
1\\
3
\end{array}} \right)s\)

two correct equations     A1A1

e.g. \(2 + t = 2 + 2s\) , \( – 2 – t = 4 + s\) , \(5 + t = 7 + 3s\)

attempt to solve     (M1)

one correct parameter     A1

e.g. \(t = – 4\) , \(s = – 2\)

C is \(( – 2{\text{, }}2{\text{, }}1)\)     A1     N3

[6 marks]

d.

Question

Consider the points A(\(5\), \(2\), \(1\)) , B(\(6\), \(5\), \(3\)) , and C(\(7\), \(6\), \(a + 1\)) , \(a \in{\mathbb{R}}\) .

Let \({\rm{q}}\) be the angle between \(\overrightarrow {{\rm{AB}}} \) and \(\overrightarrow {{\rm{AC}}} \) .

Find

  (i)     \(\overrightarrow {{\rm{AB}}} \) ;

  (ii)     \(\overrightarrow {{\rm{AC}}} \) .

[3]
a.

Find the value of \(a\) for which \({\rm{q}} = \frac{\pi }{2}\) .

[4]
b.

i. Show that \(\cos q = \frac{{2a + 14}}{{\sqrt {14{a^2} + 280} }}\) .

ii. Hence, find the value of a for which \({\rm{q}} = 1.2\) .

[8]
c.

Hence, find the value of a for which \({\rm{q}} = 1.2\) .

[4]
c.ii.
Answer/Explanation

Markscheme

(i)     appropriate approach     (M1)

eg   \(\overrightarrow {{\rm{AO}}} {\rm{ + }}\overrightarrow {{\rm{OB}}} \) ,  \({\rm{B}} – {\rm{A}}\)

\(\overrightarrow {{\rm{AB}}}  = \left( \begin{array}{l}
1\\
3\\
2
\end{array} \right)\)     A1     N2

(ii)     \(\overrightarrow {{\rm{AC}}}  = \left( \begin{array}{l}
2\\
4\\
a
\end{array} \right)\)     A1     N1

[3 marks]

a.

valid reasoning (seen anywhere)     R1

eg   scalar product is zero, \(\cos \frac{\pi }{2} = \frac{{\boldsymbol{u} \bullet \boldsymbol{v}}}{{\left| \boldsymbol{u} \right|\left| \boldsymbol{v} \right|}}\)

correct scalar product of their \(\overrightarrow {{\rm{AB}}} \) and \(\overrightarrow {{\rm{AC}}} \) (may be seen in part (c))     (A1)

eg   \(1(2) + 3(4) + 2(a)\)

correct working for their \(\overrightarrow {{\rm{AB}}} \) and \(\overrightarrow {{\rm{AC}}} \)     (A1)

eg   \(2a + 14\) , \(2a = – 14\)

\(a = – 7\)    A1     N3

[4 marks]

b.

correct magnitudes (may be seen in (b))     (A1)(A1)

\(\sqrt {{1^2} + {3^2} + {2^2}} \left( { = \sqrt {14} } \right)\) , \(\sqrt {{2^2} + {4^2} + {a^2}} \left( { = \sqrt {20 + {a^2}} } \right)\)

substitution into formula     (M1)

eg   \(\cos \theta \frac{{1 \times 2 + 3 \times 4 + 2 \times a}}{{\sqrt {{1^2} + {3^2} + {2^2}} \sqrt {{2^2} + {4^2} + {a^2}} }}\) , \(\frac{{14 + 2a}}{{\sqrt {14} \sqrt {4 + 16 + {a^2}} }}\)

simplification leading to required answer     A1

eg   \(\cos \theta  = \frac{{14 + 2a}}{{\sqrt {14} \sqrt {20 + {a^2}} }}\)

\(\cos \theta  = \frac{{2a + 14}}{{\sqrt {14{a^2} + 280} }}\)     AG     N0

[4 marks]

correct setup     (A1)

eg   \(\cos 1.2 = \frac{{2a + 14}}{{\sqrt {14{a^2} + 280} }}\)

valid attempt to solve     (M1)

eg sketch, \(\frac{{2a + 14}}{{\sqrt {14{a^2} + 280} }} – \cos 1.2 = 0\) , attempt to square

\(a = – 3.25\)     A2     N3

[4 marks]

c.

correct setup     (A1)

eg   \(\cos 1.2 = \frac{{2a + 14}}{{\sqrt {14{a^2} + 280} }}\)

valid attempt to solve     (M1)

eg sketch, \(\frac{{2a + 14}}{{\sqrt {14{a^2} + 280} }} – \cos 1.2 = 0\) , attempt to square

\(a = – 3.25\)     A2     N3

[4 marks]

c.ii.
Scroll to Top