IB DP Maths Topic 4.1 Algebraic and geometric approaches to the sum and difference of two vectors SL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Consider the points A (1 , 5 , 4) , B (3 , 1 , 2) and D (3 , k , 2) , with (AD) perpendicular to (AB) .

The point O has coordinates (0 , 0 , 0) , point A has coordinates (1 , – 2 , 3) and point B has coordinates (– 3 , 4 , 2) .

Find

(i)     \(\overrightarrow {{\rm{AB}}} \) ;

(ii)    \(\overrightarrow {{\rm{AD}}} \) giving your answer in terms of k .

[3 marks]

[3]
a(i) and (ii).

Show that \(k = 7\) .

[3]
b.

The point C is such that \(\overrightarrow {{\rm{BC}}} = \frac{1}{2}\overrightarrow {{\rm{AD}}} \) .

Find the position vector of C.

[4]
c.

Find \(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C}}\) .

[3]
d.
Answer/Explanation

Markscheme

(i) evidence of combining vectors     (M1)

e.g. \(\overrightarrow {{\rm{AB}}} = \overrightarrow {{\rm{OB}}} – \overrightarrow {{\rm{OA}}} \)  (or \(\overrightarrow {{\rm{AD}}} = \overrightarrow {{\rm{AO}}} + \overrightarrow {{\rm{OD}}} \) in part (ii)) 

\(\overrightarrow {{\rm{AB}}} = \left( {\begin{array}{*{20}{c}}
2\\
{ – 4}\\
{ – 2}
\end{array}} \right)\)    A1     N2

(ii) \(\overrightarrow {{\rm{AD}}} = \left( {\begin{array}{*{20}{c}}
2\\
{k – 5}\\
{ – 2}
\end{array}} \right)\)     A1     N1

[3 marks]

a(i) and (ii).

evidence of using perpendicularity \( \Rightarrow \) scalar product = 0     (M1)

e.g. \(\left( {\begin{array}{*{20}{c}}
2\\
{ – 4}\\
{ – 2}
\end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}
2\\
{k – 5}\\
{ – 2}
\end{array}} \right) = 0\)

\(4 – 4(k – 5) + 4 = 0\)     A1

\( – 4k + 28 = 0\) (accept any correct equation clearly leading to \(k = 7\) )    A1

\(k = 7\)     AG     N0

[3 marks]

b.

\(\overrightarrow {{\rm{AD}}} = \left( {\begin{array}{*{20}{c}}
2\\
2\\
{ – 2}
\end{array}} \right)\)     (A1)

 \(\overrightarrow {{\rm{BC}}} = \left( {\begin{array}{*{20}{c}}
1\\
1\\
{ – 1}
\end{array}} \right)\)    A1

evidence of correct approach     (M1)

e.g. \(\overrightarrow {{\rm{OC}}} = \overrightarrow {{\rm{OB}}} + \overrightarrow {{\rm{BC}}} \) , \(\left( {\begin{array}{*{20}{c}}
3\\
1\\
2
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1\\
1\\
{ – 1}
\end{array}} \right)\) , \(\left( {\begin{array}{*{20}{c}}
{x – 3}\\
{y – 1}\\
{z – 2}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1\\
1\\
{ – 1}
\end{array}} \right)\)

\(\overrightarrow {{\rm{OC}}} = \left( {\begin{array}{*{20}{c}}
4\\
2\\
1
\end{array}} \right)\)     A1     N3

[4 marks]

c.

METHOD 1

choosing appropriate vectors, \(\overrightarrow {{\rm{BA}}} \) , \(\overrightarrow {{\rm{BC}}} \)     (A1)

finding the scalar product     M1

e.g. \( – 2(1) + 4(1) + 2( – 1)\) , \(2(1) + ( – 4)(1) + ( – 2)( – 1)\)

\(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C = 0}}\)     A1     N1

METHOD 2

\(\overrightarrow {{\rm{BC}}} \) parallel to \(\overrightarrow {{\rm{AD}}} \) (may show this on a diagram with points labelled)     R1

\(\overrightarrow {{\rm{BC}}} \bot \overrightarrow {{\rm{AB}}} \) (may show this on a diagram with points labelled)     R1

\({\rm{A}}\widehat {\rm{B}}{\rm{C}} = 90^\circ \)

\(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C = 0}}\)     A1     N1

[3 marks]

d.

Question

The vertices of the triangle PQR are defined by the position vectors

\(\overrightarrow {{\rm{OP}}}  = \left( {\begin{array}{*{20}{c}}
4\\
{ – 3}\\
1
\end{array}} \right)\) , \(\overrightarrow {{\rm{OQ}}}  = \left( {\begin{array}{*{20}{c}}
3\\
{ – 1}\\
2
\end{array}} \right)\) and \(\overrightarrow {{\rm{OR}}}  = \left( {\begin{array}{*{20}{c}}
6\\
{ – 1}\\
5
\end{array}} \right)\) .

Find

(i)     \(\overrightarrow {{\rm{PQ}}} \) ;

(ii)    \(\overrightarrow {{\rm{PR}}} \) .

[3]
a.

Show that \(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\) .

[7]
b.

(i)     Find \({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}}\) .

(ii)    Hence, find the area of triangle PQR, giving your answer in the form \(a\sqrt 3 \) .

[6]
c.
Answer/Explanation

Markscheme

(i) evidence of approach     (M1)

e.g. \(\overrightarrow {{\rm{PQ}}}  = \overrightarrow {{\rm{PO}}}  + \overrightarrow {{\rm{OQ}}} \) , \({\rm{Q}} – {\rm{P}}\)

\(\overrightarrow {{\rm{PQ}}}  = \left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
1
\end{array}} \right)\)     A1     N2

(ii) \(\overrightarrow {{\rm{PR}}}  = \left( {\begin{array}{*{20}{c}}
2\\
2\\
4
\end{array}} \right)\)     A1     N1

[3 marks]

a.

METHOD 1

choosing correct vectors \(\overrightarrow {{\rm{PQ}}} \) and \(\overrightarrow {{\rm{PR}}} \)    (A1)(A1)

finding \(\overrightarrow {{\rm{PQ}}}  \bullet \overrightarrow {{\rm{PR}}} \) , \(\left| {\overrightarrow {{\rm{PQ}}} } \right|\) , \(\left| {\overrightarrow {{\rm{PR}}} } \right|\)    (A1) (A1)(A1)

\(\overrightarrow {{\rm{PQ}}}  \bullet \overrightarrow {{\rm{PR}}}  = – 2 + 4 + 4( = 6)\)

\(\left| {\overrightarrow {{\rm{PQ}}} } \right| = \sqrt {{{( – 1)}^2} + {2^2} + {1^2}} \) \(\left( { = \sqrt 6 } \right)\) , \(\left| {\overrightarrow {{\rm{PR}}} } \right| = \sqrt {{2^2} + {2^2} + {4^2}} \) \(\left( { = \sqrt {24} } \right)\)

substituting into formula for angle between two vectors     M1

e.g. \(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{6}{{\sqrt 6  \times \sqrt {24} }}\)

simplifying to expression clearly leading to \(\frac{1}{2}\)     A1

e.g. \(\frac{6}{{\sqrt 6  \times 2\sqrt 6 }}\) , \(\frac{6}{{\sqrt {144} }}\) , \(\frac{6}{{12}}\)

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\)     AG     N0

METHOD 2

evidence of choosing cosine rule (seen anywhere)     (M1)

\(\overrightarrow {{\rm{QR}}}  = \left( {\begin{array}{*{20}{c}}
3\\
0\\
3
\end{array}} \right)\)     A1

\(\left| {\overrightarrow {{\rm{QR}}} } \right| = \sqrt {18} \) , \(\left| {\overrightarrow {{\rm{PQ}}} } \right| = \sqrt 6 \) and \(\left| {\overrightarrow {{\rm{PR}}} } \right| = \sqrt {24} \)     (A1)(A1)(A1)

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{{{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt {24} } \right)}^2} – {{\left( {\sqrt {18} } \right)}^2}}}{{2\sqrt 6  \times \sqrt {24} }}\)     A1

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{{6 + 24 – 18}}{{24}}\) \(\left( { = \frac{{12}}{{24}}} \right)\)     A1

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\)      AG     N0

[7 marks]

b.

(i) METHOD 1

evidence of appropriate approach     (M1)

e.g. using \({\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{R}}\widehat {\rm{P}}{\rm{Q + co}}{{\rm{s}}^{\rm{2}}}{\rm{R}}\widehat {\rm{P}}{\rm{Q}} = 1\) , diagram

substituting correctly     (A1)

e.g. \({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}} = \sqrt {1 – {{\left( {\frac{1}{2}} \right)}^2}} \)

\({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}} = \sqrt {\frac{3}{4}} \) \(\left( { = \frac{{\sqrt 3 }}{2}} \right)\)     A1     N3

METHOD 2

since \(\cos \widehat {\rm{P}} = \frac{1}{2}\) , \(\widehat {\rm{P}} = 60^\circ \)     (A1)

evidence of approach

e.g. drawing a right triangle, finding the missing side     (A1)

\(\sin \widehat {\rm{P}} = \frac{{\sqrt 3 }}{2}\)     A1     N3

(ii) evidence of appropriate approach      (M1)

e.g. attempt to substitute into \(\frac{1}{2}ab\sin C\)

correct substitution

e.g. area \( = \frac{1}{2}\sqrt 6  \times \sqrt {24}  \times \frac{{\sqrt 3 }}{2}\)     A1

area \( = 3\sqrt 3 \)     A1     N2

[6 marks]

c.

Question

The line \({L_1}\) is parallel to the z-axis. The point P has position vector \(\left( {\begin{array}{*{20}{c}}
8\\
1\\
0
\end{array}} \right)\) and lies on \({L_1}\).

Write down the equation of \({L_1}\) in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\).

[2]
a.

The line \({L_2}\) has equation \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
2\\
4\\
{ – 1}
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right)\) . The point A has position vector \(\left( {\begin{array}{*{20}{c}}
6\\
2\\
9
\end{array}} \right)\) .

Show that A lies on \({L_2}\) .

[4]
b.

Let B be the point of intersection of lines \({L_1}\) and \({L_2}\) .

(i)     Show that \(\overrightarrow {{\rm{OB}}}  = \left( {\begin{array}{*{20}{c}}
8\\
1\\
{14}
\end{array}} \right)\) .

(ii)    Find \(\overrightarrow {{\rm{AB}}} \) .

[7]
c.

The point C is at (2, 1, − 4). Let D be the point such that ABCD is a parallelogram.

Find \(\overrightarrow {{\rm{OD}}} \) .

[3]
d.
Answer/Explanation

Markscheme

\({L_1}:{\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
8\\
1\\
0
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
0\\
0\\
1
\end{array}} \right)\)     A2     N2

[2 marks]

a.

evidence of equating \({\boldsymbol{r}}\) and \(\overrightarrow {{\rm{OA}}} \)     (M1)

e.g. \(\left( {\begin{array}{*{20}{c}}
6\\
2\\
9
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
4\\
{ – 1}
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right)\) , \(A = r\)

one correct equation     A1

e.g. \(6 = 2 + 2s\) , \(2 = 4 – s\) , \(9 = – 1 + 5s\)

\(s = 2\)     A1

evidence of confirming for other two equations     A1

e.g. \(6 = 2 + 4\) , \(2 = 4 – 2\) , \(9 = – 1 + 10\)

so A lies on \({L_2}\)      AG     N0

[4 marks]

b.

(i) evidence of approach     M1

e.g. \(\left( {\begin{array}{*{20}{c}}
2\\
4\\
{ – 1}
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
8\\
1\\
0
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
0\\
0\\
1
\end{array}} \right)\) \({L_1} = {L_2}\)

one correct equation     A1

e.g. \(2 + 2s = 8\) , \(4 – s = 1\) , \( – 1 + 5s = t\)

attempt to solve     (M1)

finding \(s = 3\)     A1

substituting     M1

e.g. \(\overrightarrow {{\rm{OB}}}  = \left( {\begin{array}{*{20}{c}}
2\\
4\\
{ – 1}
\end{array}} \right) + 3\left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right)\)

\(\overrightarrow {{\rm{OB}}}  = \left( {\begin{array}{*{20}{c}}
8\\
1\\
{14}
\end{array}} \right)\)     AG     N0

(ii) evidence of appropriate approach     (M1)

e.g. \(\overrightarrow {{\rm{AB}}}  = \overrightarrow {{\rm{AO}}}  + \overrightarrow {{\rm{OB}}} \) , \(\overrightarrow {{\rm{AB}}}  = \overrightarrow {{\rm{OB}}}  – \overrightarrow {{\rm{OA}}} \)

\(\overrightarrow {{\rm{AB}}}  = \left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right)\)     A1     N2  

[7 marks]

c.

evidence of appropriate approach    (M1)

e.g. \(\overrightarrow {{\rm{AB}}}  = \overrightarrow {{\rm{DC}}} \)

correct values     A1

e.g. \(\overrightarrow {{\rm{OD}}}  + \left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
1\\
{ – 4}
\end{array}} \right)\) ,  \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
1\\
{ – 4}
\end{array}} \right)\) , \(\left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{2 – x}\\
{1 – y}\\
{ – 4 – z}
\end{array}} \right)\)

\(\overrightarrow {{\rm{OD}}}  = \left( {\begin{array}{*{20}{c}}
0\\
2\\
{ – 9}
\end{array}} \right)\)     A1     N2

[3 marks]

d.

Question

Consider the vectors \(\boldsymbol{a} = \left( {\begin{array}{*{20}{c}}
2\\
{ – 3}
\end{array}} \right)\) and \(\boldsymbol{b} = \left( {\begin{array}{*{20}{c}}
1\\
4
\end{array}} \right)\) .

Let \(2\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c} = 0\) , where \(0\) is the zero vector.

(a)     Find

  (i)     \(2\boldsymbol{a} + \boldsymbol{b}\) ;

  (ii)     \(\left| {2\boldsymbol{a} + \boldsymbol{b}} \right|\) .

Let \(2\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c} = 0\) , where \(0\) is the zero vector.

(b)     Find \(\boldsymbol{c}\) .

[6]
.

Find

  (i)     \(2\boldsymbol{a} + \boldsymbol{b}\) ;

  (ii)     \(\left| {2\boldsymbol{a} + \boldsymbol{b}} \right|\) .

[4]
a.

Find \(\boldsymbol{c}\) .

[2]
b.
Answer/Explanation

Markscheme

(a)     (i)     \(2\boldsymbol{a} = \left( {\begin{array}{*{20}{c}}
4\\
{ – 6}
\end{array}} \right)\)     (A1)

correct expression for \(2\boldsymbol{a} + \boldsymbol{b}\)     A1     N2

eg \(\left( {\begin{array}{*{20}{c}}
5\\
{ – 2}
\end{array}} \right)\) , \((5, – 2)\) , \(5\boldsymbol{i} – 2\boldsymbol{j}\)

(ii)     correct substitution into length formula     (A1)

eg \(\sqrt {{5^2} + {2^2}} \) , \(\sqrt {{5^2} +  – {2^2}} \)

\(\left| {2\boldsymbol{a} + \boldsymbol{b}} \right| = \sqrt {29} \)     A1     N2

[4 marks]

(b)     valid approach     (M1)

eg \(\boldsymbol{c} = – (2\boldsymbol{a} + \boldsymbol{b})\) , \(5 + x = 0\) , \( – 2 + y = 0\)

\(\boldsymbol{c} = \left( {\begin{array}{*{20}{c}}
{ – 5}\\
2
\end{array}} \right)\)     A1 N2

[2 marks]

.

(i)     \(2\boldsymbol{a} = \left( {\begin{array}{*{20}{c}}
4\\
{ – 6}
\end{array}} \right)\)     (A1)

correct expression for \(2\boldsymbol{a} + \boldsymbol{b}\)     A1     N2

eg \(\left( {\begin{array}{*{20}{c}}
5\\
{ – 2}
\end{array}} \right)\) , \((5, – 2)\) , \(5\boldsymbol{i} – 2\boldsymbol{j}\)

(ii)     correct substitution into length formula     (A1)

eg \(\sqrt {{5^2} + {2^2}} \) , \(\sqrt {{5^2} +  – {2^2}} \)

\(\left| {2\boldsymbol{a} + \boldsymbol{b}} \right| = \sqrt {29} \)     A1     N2

[4 marks]

a.

valid approach     (M1)

eg \(\boldsymbol{c} = – (2\boldsymbol{a} + \boldsymbol{b})\) , \(5 + x = 0\) , \( – 2 + y = 0\)

\(\boldsymbol{c} = \left( {\begin{array}{*{20}{c}}
{ – 5}\\
2
\end{array}} \right)\)     A1 N2

[2 marks]

b.

Question

In the following diagram, \(\boldsymbol{u} = \overrightarrow {{\rm{AB}}} \) and \(\boldsymbol{v} = \overrightarrow {{\rm{BD}}} \) .

 


The midpoint of \(\overrightarrow {{\rm{AD}}} \) is E and \(\frac{{{\rm{BD}}}}{{{\rm{DC}}}} = \frac{1}{3}\) .

Express each of the following vectors in terms of \(\boldsymbol{u}\) and \(\boldsymbol{v}\) .

\(\overrightarrow {{\rm{AE}}} \)

[3]
a.

\(\overrightarrow {{\rm{EC}}} \)

[4]
b.
Answer/Explanation

Markscheme

\(\overrightarrow {{\rm{AE}}}  = \frac{1}{2}\overrightarrow {{\rm{AD}}} \)     A1

attempt to find \(\overrightarrow {{\rm{AD}}} \)     M1

e.g. \(\overrightarrow {{\rm{AB}}}  + \overrightarrow {{\rm{BD}}} \) , \({\boldsymbol{u}} + {\boldsymbol{v}}\)

\(\overrightarrow {{\rm{AE}}}  = \frac{1}{2}(u + v)\) \(\left( { = \frac{1}{2}{\boldsymbol{u}} + \frac{1}{2}{\boldsymbol{v}}} \right)\)     A1     N2

[3 marks]

a.

\(\overrightarrow {{\rm{EC}}}  = \overrightarrow {{\rm{AE}}}  = \frac{1}{2}({\boldsymbol{u}} + {\boldsymbol{v}})\)     A1

\(\overrightarrow {{\rm{DC}}}  = 3{\boldsymbol{v}}\)     A1

attempt to find \(\overrightarrow {{\rm{EC}}} \)     M1

e.g. \(\overrightarrow {{\rm{ED}}}  + \overrightarrow {{\rm{DC}}} \) , \(\frac{1}{2}({\boldsymbol{u}} + {\boldsymbol{v}}) + 3{\boldsymbol{v}}\)

\(\overrightarrow {{\rm{EC}}}  = \frac{1}{2}{\boldsymbol{u}} + \frac{7}{2}{\boldsymbol{v}}\) \(\left( { = \frac{1}{2}({\boldsymbol{u}} + 7{\boldsymbol{v}})} \right)\)     A1     N2

[4 marks]

b.
Scroll to Top