IB DP Maths Topic 4.1 Vectors as displacements in the plane and in three dimensions SL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

A line \(L\) passes through points \({\text{A}}( – 2,{\text{ }}4,{\text{ }}3)\) and \({\text{B}}( – 1,{\text{ }}3,{\text{ }}1)\).

(i)     Show that \(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\).

(ii)     Find \(\left| {\overrightarrow {{\text{AB}}} } \right|\).

[3]
a.

Find a vector equation for \(L\).

[2]
b.

The following diagram shows the line \(L\) and the origin \(O\). The point \(C\) also lies on \(L\).

Point \(C\) has position vector \(\left( {\begin{array}{*{20}{c}} 0 \\ y \\ { – 1} \end{array}} \right)\).

Show that \(y = 2\).

[4]
c.

(i)     Find \(\overrightarrow {{\text{OC}}}  \bullet \overrightarrow {{\text{AB}}} \).

(ii)     Hence, write down the size of the angle between \(C\) and \(L\).

[3]
d.

Hence or otherwise, find the area of triangle \(OAB\).

[4]
e.
Answer/Explanation

Markscheme

(i)     correct approach     A1

eg\(\;\;\;{\text{B}} – {\text{A, AO}} + {\text{OB}}\)

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\)     AG     N0

(ii)     correct substitution     (A1)

eg\(\;\;\;\sqrt {{{(1)}^2} + {{( – 1)}^2} + {{( – 2)}^2}} ,{\text{ }}\sqrt {1 + 1 + 4} \)

\(\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt 6 \)     A1     N2

[3 marks]

a.

any correct equation in the form \(r = a + tb\) (any parameter for \(t\))

where \(a\) is \(\left( {\begin{array}{*{20}{c}} { – 2} \\ 4 \\ 3 \end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}} { – 1} \\ 3 \\ 1 \end{array}} \right)\) and \(b\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\)     A2     N2

eg\(\;\;\;\(r\) = \left( {\begin{array}{*{20}{c}} { – 2} \\ 4 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right),{\text{ }}(x,{\text{ }}y,{\text{ }}z) = ( – 1,{\text{ }}3,{\text{ }}1) + t(1,{\text{ }} – 1,{\text{ }} – 2),{\text{ }}{\mathbf{r}} = \left( {\begin{array}{*{20}{c}} { – 1 + t} \\ {3 – t} \\ {1 – 2t} \end{array}} \right)\)

Note:     Award A1 for the form \({\mathbf{a}} + t{\mathbf{b}}\), A1 for the form \(L = {\mathbf{a}} + t{\mathbf{b}}\), A0 for the form \({\mathbf{r}} = {\mathbf{b}} + t{\mathbf{a}}\).

b.

METHOD 1

valid approach     (M1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} { – 1} \\ 3 \\ 1 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ y \\ { – 1} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 0 \\ y \\ { – 1} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { – 2} \\ 4 \\ 3 \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\)

one correct equation from their approach     A1

eg\(\;\;\; – 1 + t = 0,{\text{ }}1 – 2t =  – 1,{\text{ }} – 2 + s = 0,{\text{ }}3 – 2s =  – 1\)

one correct value for their parameter and equation     A1

eg\(\;\;\;t = 1,{\text{ }}s = 2\)

correct substitution     A1

eg\(\;\;\;3 + 1( – 1),{\text{ }}4 + 2( – 1)\)

\(y = 2\)     AG     N0

METHOD 2

valid approach     (M1)

eg\(\;\;\;\overrightarrow {{\text{AC}}}  = k\overrightarrow {{\text{AB}}} \)

correct working     A1

eg\(\;\;\;\overrightarrow {{\text{AC}}}  = \left( {\begin{array}{*{20}{c}} 2 \\ {y – 4} \\ { – 4} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 2 \\ {y – 4} \\ { – 4} \end{array}} \right) = k\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\)

\(k = 2\)     A1

correct substitution     A1

eg\(\;\;\;y – 4 =  – 2\)

\(y = 2\)     AG     N0

[4 marks]

c.

(i)     correct substitution     A1

eg\(\;\;\;0(1) + 2( – 1) – 1( – 2),{\text{ }}0 – 2 + 2\)

\(\overrightarrow {{\text{OC}}}  \bullet \overrightarrow {{\text{AB}}}  = 0\)     A1     N1

(ii)     \(9{0^ \circ }\) or \(\frac{\pi }{2}\)     A1     N1

[3 marks]

d.

METHOD 1 \({\text{(area}} = 0.5 \times {\text{height}} \times {\text{base)}}\)

\(\left| {\overrightarrow {{\text{OC}}} } \right| = \sqrt {0 + {2^2} + {{( – 1)}^2}} \;\;\;\left( { = \sqrt 5 } \right)\;\;\;\)(seen anywhere)     A1

valid approach     (M1)

eg\(\;\;\;\frac{1}{2} \times \left| {\overrightarrow {{\text{AB}}} } \right| \times \left| {\overrightarrow {{\text{OC}}} } \right|,{\text{ }}\left| {\overrightarrow {{\text{OC}}} } \right|\) is height of triangle

correct substitution     A1

eg\(\;\;\;\frac{1}{2} \times \sqrt 6  \times \sqrt {0 + {{(2)}^2} + {{( – 1)}^2}} ,{\text{ }}\frac{1}{2} \times \sqrt 6  \times \sqrt 5 \)

area is \(\frac{{\sqrt {30} }}{2}\)     A1     N2

METHOD 2 (difference of two areas)

one correct magnitude (seen anywhere)     A1

eg\(\;\;\;\left| {\overrightarrow {{\text{OC}}} } \right| = \sqrt {{2^2} + {{( – 1)}^2}} \;\;\;\left( { = \sqrt 5 } \right),\;\;\;\left| {\overrightarrow {{\text{AC}}} } \right| = \sqrt {4 + 4 + 16} \;\;\;\left( { = \sqrt {24} } \right),\;\;\;\left| {\overrightarrow {{\text{BC}}} } \right| = \sqrt 6 \)

valid approach     (M1)

eg\(\;\;\;\Delta {\text{OAC}} – \Delta {\text{OBC}}\)

correct substitution     A1

eg\(\;\;\;\frac{1}{2} \times \sqrt {24}  \times \sqrt 5  – \frac{1}{2} \times \sqrt 5  \times \sqrt 6 \)

area is \(\frac{{\sqrt {30} }}{2}\)     A1     N2

METHOD 3 \({\text{(area}} = \frac{1}{2}ab\sin C{\text{ for }}\Delta {\text{OAB)}}\)

one correct magnitude of \(\overrightarrow {{\text{OA}}} \) or \(\overrightarrow {{\text{OB}}} \) (seen anywhere)     A1

eg\(\;\;\;\left| {\overrightarrow {{\text{OA}}} } \right| = \sqrt {{{( – 2)}^2} + {4^2} + {3^2}} \;\;\;\left( { = \sqrt {29} } \right),\;\;\;\left| {\overrightarrow {{\text{OB}}} } \right| = \sqrt {1 + 9 + 1} \;\;\;\left( { = \sqrt {11} } \right)\)

valid attempt to find \(\cos \theta \) or \(\sin \theta \)     (M1)

eg\(\;\;\;\cos {\text{C}} = \frac{{ – 1 – 3 – 2}}{{\sqrt 6  \times \sqrt {11} }}\;\;\;\left( { = \frac{{ – 6}}{{\sqrt {66} }}} \right),\;\;\;29 = 6 + 11 – 2\sqrt 6 \sqrt {11} \cos \theta ,{\text{ }}\frac{{\sin \theta }}{{\sqrt 5 }} = \frac{{\sin 90}}{{\sqrt {29} }}\)

correct substitution into \(\frac{1}{2}ab\sin {\text{C}}\)     A1

eg\(\;\;\;\frac{1}{2} \times \sqrt 6  \times \sqrt {11}  \times \sqrt {1 – \frac{{36}}{{66}}} ,{\text{ }}0.5 \times \sqrt 6  \times \sqrt {29}  \times \frac{{\sqrt 5 }}{{\sqrt {29} }}\)

area is \(\frac{{\sqrt {30} }}{2}\)     A1     N2

[4 marks]

Total [16 marks]

e.

Question

A line \({L_1}\) passes through the points \({\text{A}}(0,{\text{ }} – 3,{\text{ }}1)\) and \({\text{B}}( – 2,{\text{ }}5,{\text{ }}3)\).

(i)     Show that \(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right)\).

(ii)     Write down a vector equation for \({L_1}\).

[3]
a.

A line \({L_2}\) has equation \({\mathbf{r}} = \left( {\begin{array}{*{20}{c}} { – 1} \\ 7 \\ { – 4} \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ { – 1} \end{array}} \right)\). The lines \({L_1}\) and \({L_2}\) intersect at a point \(C\).

Show that the coordinates of \(C\) are \(( – 1,{\text{ }}1,{\text{ }}2)\).

[5]
b.

A point \(D\) lies on line \({L_2}\) so that \(\left| {\overrightarrow {{\text{CD}}} } \right| = \sqrt {18} \) and \(\overrightarrow {{\text{CA}}}  \bullet \overrightarrow {{\text{CD}}}  =  – 9\). Find \({\rm{A\hat CD}}\).

[7]
c.
Answer/Explanation

Markscheme

(i)     correct approach     A1

eg\(\;\;\;{\text{OB}} – {\text{OA, }}\left( {\begin{array}{*{20}{c}} { – 2} \\ 5 \\ 3 \end{array}} \right) – \left( {\begin{array}{*{20}{c}} 0 \\ { – 3} \\ 1 \end{array}} \right),{\text{ B}} – {\text{A}}\)

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right)\)     AG     N0

(ii)     any correct equation in the form \(r = a + \) t\(b\) (accept any parameter for \(t\))

where \(a\) is \(\left( {\begin{array}{*{20}{c}} 0 \\ { – 3} \\ 1 \end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}} { – 2} \\ 5 \\ 3 \end{array}} \right)\), and \(b\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right)\)     A2     N2

eg\(r\) = \left( {\begin{array}{*{20}{c}} 0 \\ { – 3} \\ 1 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right),\(r\) = \left( {\begin{array}{*{20}{c}} { – 2 – 2s} \\ {5 + 8s} \\ {3 + 2s} \end{array}} \right),\(r = 2i + 5j + 3k + \) t\(( – 2i + 8j + 2k)\)

 

Note:     Award A1 for the form \(a\) + t\(b\), A1 for the form \(L = \(a\) + t\(b\),

A0 for the form \(r\) = \(b\) + t\(a\).

[3 marks]

a.

valid approach     (M1)

eg\(\;\;\;\)equating lines, \({L_1} = {L_2}\)

one correct equation in one variable     A1

eg\(\;\;\; – 2t =  – 1,{\text{ }} – 2 – 2t =  – 1\)

valid attempt to solve     (M1)

eg\(\;\;\;2t = 1,{\text{ }} – 2t = 1\)

one correct parameter     A1

eg\(\;\;\;t = \frac{1}{2},{\text{ }}t =  – \frac{1}{2},{\text{ }}s =  – 6\)

correct substitution of either parameter     A1

eg\(\;\;\;r = \left( {\begin{array}{*{20}{c}} 0 \\ { – 3} \\ 1 \end{array}} \right) + \frac{1}{2}\left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { – 2} \\ 5 \\ 3 \end{array}} \right) – \frac{1}{2}\left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { – 1} \\ 7 \\ { – 4} \end{array}} \right) – 6\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ { – 1} \end{array}} \right)\)

the coordinates of \(C\) are \(( – 1,{\text{ }}1,{\text{ }}2)\), or position vector of \(C\) is \(\left( {\begin{array}{*{20}{c}} { – 1} \\ 1 \\ 2 \end{array}} \right)\)     AG     N0

 

Note:     If candidate uses the same parameter in both vector equations and working shown, award M1A1M1A0A0.

[5 marks]

b.

valid approach     (M1)

eg\(\;\;\;\)attempt to find \(\overrightarrow {{\text{CA}}} ,{\text{ }}\cos {\rm{A\hat CD}} = \frac{{\overrightarrow {{\text{CA}}}  \bullet \overrightarrow {{\text{CD}}} }}{{\left| {\overrightarrow {{\text{CA}}} } \right|\left| {\overrightarrow {{\text{CD}}} } \right|}},{\rm{ A\hat CD}}\) formed by \(\overrightarrow {{\text{CA}}} \) and \(\overrightarrow {{\text{CD}}} \)

\(\overrightarrow {{\text{CA}}}  = \left( {\begin{array}{*{20}{c}} 1 \\ { – 4} \\ { – 1} \end{array}} \right)\)     (A1)

 

Notes:     Exceptions to FT:

1 if candidate indicates that they are finding \(\overrightarrow {{\text{CA}}} \), but makes an error, award M1A0;

2 if candidate finds an incorrect vector (including \(\overrightarrow {{\text{AC}}} \)), award M0A0.

In both cases, if working shown, full FT may be awarded for subsequent correct FT work.

Award the final (A1) for simplification of their value for \({\rm{A\hat CD}}\).

Award the final A2 for finding their arc cos. If their value of cos does not allow them to find an angle, they cannot be awarded this A2.

 

finding \(\left| {\overrightarrow {{\text{CA}}} } \right|\) (may be seen in cosine formula)     A1

eg\(\;\;\;\sqrt {{1^2} + {{( – 4)}^2} + {{( – 1)}^2}} ,{\text{ }}\sqrt {18} \)

correct substitution into cosine formula     (A1)

eg\(\;\;\;\frac{{ – 9}}{{\sqrt {18} \sqrt {18} }}\)

finding \(\cos {\rm{A\hat CD}} – \frac{1}{2}\)     (A1)

\({\rm{A\hat CD}} = \frac{{2\pi }}{3}\;\;\;(120^\circ )\)     A2     N2

 

Notes:     Award A1 if additional answers are given.

Award A1 for answer \(\frac{\pi }{3}{\rm{ (60^\circ )}}\).

[7 marks]

Total [15 marks]

c.

Question

A line \(L\) passes through points \({\text{A}}( – 3,{\text{ }}4,{\text{ }}2)\) and \({\text{B}}( – 1,{\text{ }}3,{\text{ }}3)\).

The line \(L\) also passes through the point \({\text{C}}(3,{\text{ }}1,{\text{ }}p)\).

Show that \(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right)\).

[1]
a.i.

Find a vector equation for \(L\).

[2]
a.ii.

Find the value of \(p\).

[5]
b.

The point D has coordinates \(({q^2},{\text{ }}0,{\text{ }}q)\). Given that \(\overrightarrow {{\text{DC}}} \) is perpendicular to \(L\), find the possible values of \(q\).

[7]
c.
Answer/Explanation

Markscheme

correct approach     A1

 

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} { – 1} \\ 3 \\ 3 \end{array}} \right) – \left( {\begin{array}{*{20}{c}} { – 3} \\ 4 \\ 2 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 3 \\ { – 4} \\ { – 2} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} { – 1} \\ 3 \\ 3 \end{array}} \right)\)

 

\(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right)\)    AG     N0

[1 mark]

a.i.

any correct equation in the form \(r = a + tb\) (any parameter for \(t\))

 

where \(a\) is \(\left( {\begin{array}{*{20}{c}} { – 3} \\ 4 \\ 2 \end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}} { – 1} \\ 3 \\ 3 \end{array}} \right)\) and \(b\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right)\)     A2     N2

 

eg\(\,\,\,\,\,\)\(r = \left( {\begin{array}{*{20}{c}} { – 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right),{\text{ }}(x,{\text{ }}y,{\text{ }}z) = ( – 1,{\text{ }}3,{\text{ }}3) + s( – 2,{\text{ }}1,{\text{ }} – 1),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { – 3 + 2t} \\ {4 – t} \\ {2 + t} \end{array}} \right)\)

 

Note:     Award A1 for the form \(a + tb\), A1 for the form \(L = a + tb\), A0 for the form \(r = b + ta\).

 

[2 marks]

a.ii.

METHOD 1 – finding value of parameter

valid approach     (M1)

 

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} { – 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}( – 1,{\text{ }}3,{\text{ }}3) + s( – 2,{\text{ }}1,{\text{ }} – 1) = (3,{\text{ }}1,{\text{ }}p)\)

 

one correct equation (not involving \(p\))     (A1)

eg\(\,\,\,\,\,\)\( – 3 + 2t = 3,{\text{ }} – 1 – 2s = 3,{\text{ }}4 – t = 1,{\text{ }}3 + s = 1\)

correct parameter from their equation (may be seen in substitution)     A1

eg\(\,\,\,\,\,\)\(t = 3,{\text{ }}s =  – 2\)

correct substitution     (A1)

 

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} { – 3} \\ 4 \\ 2 \end{array}} \right) + 3\left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}3 – ( – 2)\)

 

\(p = 5\,\,\,\,\,\left( {{\text{accept }}\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right)} \right)\)     A1     N2

 

METHOD 2 – eliminating parameter

valid approach     (M1)

 

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} { – 3} \\ 4 \\ 2 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right),{\text{ }}( – 1,{\text{ }}3,{\text{ }}3) + s( – 2,{\text{ }}1,{\text{ }} – 1) = (3,{\text{ }}1,{\text{ }}p)\)

 

one correct equation (not involving \(p\))     (A1)

eg\(\,\,\,\,\,\)\( – 3 + 2t = 3,{\text{ }} – 1 – 2s = 3,{\text{ }}4 – t = 1,{\text{ }}3 + s = 1\)

correct equation (with \(p\))     A1

eg\(\,\,\,\,\,\)\(2 + t = p,{\text{ }}3 – s = p\)

correct working to solve for \(p\)     (A1)

eg\(\,\,\,\,\,\)\(7 = 2p – 3,{\text{ }}6 = 1 + p\)

 

\(p = 5\,\,\,\,\,\left( {{\text{accept }}\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right)} \right)\)     A1     N2

 

[5 marks]

b.

valid approach to find \(\overrightarrow {{\text{DC}}} \) or \(\overrightarrow {{\text{CD}}} \)     (M1)

 

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right) – \left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right) – \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ 5 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2}} \\ 0 \\ q \end{array}} \right) – \left( {\begin{array}{*{20}{c}} 3 \\ 1 \\ p \end{array}} \right)\)

 

correct vector for \(\overrightarrow {{\text{DC}}} \) or \(\overrightarrow {{\text{CD}}} \) (may be seen in scalar product)     A1

 

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} {3 – {q^2}} \\ 1 \\ {5 – q} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {{q^2} – 3} \\ { – 1} \\ {q – 5} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} {3 – {q^2}} \\ 1 \\ {p – q} \end{array}} \right)\)

 

recognizing scalar product of \(\overrightarrow {{\text{DC}}} \) or \(\overrightarrow {{\text{CD}}} \) with direction vector of \(L\) is zero (seen anywhere)     (M1)

 

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} {3 – {q^2}} \\ 1 \\ {p – q} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right) = 0,{\text{ }}\overrightarrow {{\text{DC}}} \bullet \overrightarrow {{\text{AC}}} = 0,{\text{ }}\left( {\begin{array}{*{20}{c}} {3 – {q^2}} \\ 1 \\ {5 – q} \end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}} 2 \\ { – 1} \\ 1 \end{array}} \right) = 0\)

 

correct scalar product in terms of only \(q\)     A1

eg\(\,\,\,\,\,\)\(6 – 2{q^2} – 1 + 5 – q,{\text{ }}2{q^2} + q – 10 = 0,{\text{ }}2(3 – {q^2}) – 1 + 5 – q\)

correct working to solve quadratic     (A1)

eg\(\,\,\,\,\,\)\((2q + 5)(q – 2),{\text{ }}\frac{{ – 1 \pm \sqrt {1 – 4(2)( – 10)} }}{{2(2)}}\)

\(q =  – \frac{5}{2},{\text{ }}2\)     A1A1     N3

 

[7 marks]

c.

Question

Six equilateral triangles, each with side length 3 cm, are arranged to form a hexagon.
This is shown in the following diagram.

The vectors p , q and r are shown on the diagram.

Find p•(p + q + r).

Answer/Explanation

Markscheme

METHOD 1 (using |p| |2q| cosθ)

finding p + q + r (A1)

eg 2q,

| p + q + r | = 2 × 3 (= 6) (seen anywhere) A1

correct angle between p and q (seen anywhere) (A1)

\(\frac{\pi }{3}\) (accept 60°)

substitution of their values (M1)

eg 3 × 6 × cos\(\left( {\frac{\pi }{3}} \right)\)

correct value for cos\(\left( {\frac{\pi }{3}} \right)\) (seen anywhere) (A1)

eg \(\frac{1}{2},\,\,\,3 \times 6 \times \frac{1}{2}\)

p•(p + q + r) = 9 A1 N3

 

METHOD 2 (scalar product using distributive law)

correct expression for scalar distribution (A1)

eg pp + pq + pr

three correct angles between the vector pairs (seen anywhere) (A2)

eg 0° between p and p, \(\frac{\pi }{3}\) between p and q, \(\frac{{2\pi }}{3}\) between p and r

Note: Award A1 for only two correct angles.

substitution of their values (M1)

eg 3.3.cos0 +3.3.cos\(\frac{\pi }{3}\) + 3.3.cos120

one correct value for cos0, cos\(\left( {\frac{\pi }{3}} \right)\) or cos\(\left( {\frac{2\pi }{3}} \right)\) (seen anywhere) A1

eg \(\frac{1}{2},\,\,\,3 \times 6 \times \frac{1}{2}\)

p•(p + q + r) = 9 A1 N3

 

METHOD 3 (scalar product using relative position vectors)

valid attempt to find one component of p or r (M1)

eg sin 60 = \(\frac{x}{3}\), cos 60 = \(\frac{x}{3}\), one correct value \(\frac{3}{2},\,\,\frac{{3\sqrt 3 }}{2},\,\,\frac{{ – 3\sqrt 3 }}{2}\)

one correct vector (two or three dimensions) (seen anywhere) A1

eg \(p = \left( \begin{gathered}
\,\,\,\frac{3}{2} \hfill \\
\frac{{3\sqrt 3 }}{2} \hfill \\
\end{gathered} \right),\,\,q = \left( \begin{gathered}
3 \hfill \\
0 \hfill \\
\end{gathered} \right),\,\,r = \left( \begin{gathered}
\,\,\,\,\frac{3}{2} \hfill \\
– \frac{{3\sqrt 3 }}{2} \hfill \\
\,\,\,\,0 \hfill \\
\end{gathered} \right)\)

three correct vectors p + q + r = 2q (A1)

p + q + r = \(\left( \begin{gathered}
6 \hfill \\
0 \hfill \\
\end{gathered} \right)\) or \(\left( \begin{gathered}
6 \hfill \\
0 \hfill \\
0 \hfill \\
\end{gathered} \right)\) (seen anywhere, including scalar product) (A1)

correct working (A1)
eg \(\left( {\frac{3}{2} \times 6} \right) + \left( {\frac{{3\sqrt 3 }}{2} \times 0} \right),\,\,9 + 0 + 0\)

p•(p + q + r) = 9 A1 N3

[6 marks]

Question

Point A has coordinates (−4, −12, 1) and point B has coordinates (2, −4, −4).

The line L passes through A and B.

Show that \(\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right)\)

[1]
a.

Find a vector equation for L.

[2]
b.i.

Point C (k , 12 , −k) is on L. Show that k = 14.

[4]
b.ii.

Find \(\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to \).

[2]
c.i.

Write down the value of angle OBA.

[1]
c.ii.

Point D is also on L and has coordinates (8, 4, −9).

Find the area of triangle OCD.

[6]
d.
Answer/Explanation

Markscheme

correct approach A1

eg \(\mathop {{\text{AO}}}\limits^ \to \,\, + \,\,\mathop {{\text{OB}}}\limits^ \to ,\,\,\,{\text{B}} – {\text{A}}\,{\text{, }}\,\left( \begin{gathered}
\,\,2 \hfill \\
– 4 \hfill \\
– 4 \hfill \\
\end{gathered} \right) – \left( \begin{gathered}
\, – 4 \hfill \\
– 12 \hfill \\
\,\,\,1 \hfill \\
\end{gathered} \right)\)

\(\mathop {{\text{AB}}}\limits^ \to = \left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right)\) AG N0

[1 mark]

a.

any correct equation in the form r = a + tb (any parameter for t) A2 N2

where a is \(\left( \begin{gathered}
\,\,2 \hfill \\
– 4 \hfill \\
– 4 \hfill \\
\end{gathered} \right)\) or \(\left( \begin{gathered}
\, – 4 \hfill \\
– 12 \hfill \\
\,\,\,1 \hfill \\
\end{gathered} \right)\) and b is a scalar multiple of \(\left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right)\)

eg r \( = \left( \begin{gathered}
\, – 4 \hfill \\
– 12 \hfill \\
\,\,\,1 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right),\,\,\left( {x,\,\,y,\,\,z} \right) = \left( {2,\,\, – 4,\,\, – 4} \right) + t\left( {6,\,\,8,\,\, – 5} \right),\) r \( = \left( \begin{gathered}
\, – 4 + 6t \hfill \\
– 12 + 8t \hfill \\
\,\,\,1 – 5t \hfill \\
\end{gathered} \right)\)

Note: Award A1 for the form a + tb, A1 for the form L = a + tb, A0 for the form r = b + ta.

[2 marks]

b.i.

METHOD 1 (solving for t)

valid approach (M1)

eg \(\left( \begin{gathered}
\,k \hfill \\
12 \hfill \\
– k \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
\,\,2 \hfill \\
– 4 \hfill \\
– 4 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right),\,\,\left( \begin{gathered}
\,k \hfill \\
12 \hfill \\
– k \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
\, – 4 \hfill \\
– 12 \hfill \\
\,\,\,1 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right)\)

one correct equation A1

eg −4 + 8t = 12, −12 + 8t = 12

correct value for t (A1)

eg t = 2 or 3

correct substitution A1

eg 2 + 6(2), −4 + 6(3), −[1 + 3(−5)]

k = 14 AG N0

 

METHOD 2 (solving simultaneously)

valid approach (M1)

eg \(\left( \begin{gathered}
\,k \hfill \\
12 \hfill \\
– k \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
\,\,2 \hfill \\
– 4 \hfill \\
– 4 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right),\,\,\left( \begin{gathered}
\,k \hfill \\
12 \hfill \\
– k \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
\, – 4 \hfill \\
– 12 \hfill \\
\,\,\,1 \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right)\)

two correct equations in A1

eg k = −4 + 6t,k = 1 −5t

EITHER (eliminating k)

correct value for t (A1)

eg t = 2 or 3

correct substitution A1

eg 2 + 6(2), −4 + 6(3)

OR (eliminating t)

correct equation(s) (A1)

eg 5k + 20 = 30t and −6k − 6 = 30t, −k = 1 − 5\(\left( {\frac{{k + 4}}{6}} \right)\)

correct working clearly leading to k = 14 A1

eg k + 14 = 0, −6k = 6 −5k − 20, 5k = −20 + 6(1 + k)

THEN

k = 14 AG N0

[4 marks]

 

b.ii.

correct substitution into scalar product A1

eg (2)(6) − (4)(8) − (4)(−5), 12 − 32 + 20

\(\mathop {{\text{OB}}}\limits^ \to \, \bullet \mathop {{\text{AB}}}\limits^ \to \) = 0 A1 N0

[2 marks]

 

c.i.

\({\text{O}}\mathop {\text{B}}\limits^ \wedge {\text{A}} = \frac{\pi }{2},\,\,90^\circ \,\,\,\,\,\left( {{\text{accept}}\,\frac{{3\pi }}{2},\,\,270^\circ } \right)\,\) A1 N1

[1 marks]

c.ii.

METHOD 1 (\(\frac{1}{2}\) × height × CD)

recognizing that OB is altitude of triangle with base CD (seen anywhere) M1

eg \(\frac{1}{2} \times \left| {\mathop {{\text{OB}}}\limits^ \to } \right| \times \left| {\mathop {{\text{CD}}}\limits^ \to } \right|,\,\,{\text{OB}} \bot {\text{CD}},\) sketch showing right angle at B

\(\mathop {{\text{CD}}}\limits^ \to = \left( \begin{gathered}
– 6 \hfill \\
– 8 \hfill \\
\,5 \hfill \\
\end{gathered} \right)\) or \(\mathop {{\text{DC}}}\limits^ \to = \left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right)\) (seen anywhere) (A1)

correct magnitudes (seen anywhere) (A1)(A1)

\(\left| {\mathop {{\text{OB}}}\limits^ \to } \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( { – 4} \right)}^2} + {{\left( { – 4} \right)}^2}} = \left( {\sqrt {36} } \right)\)

\(\left| {\mathop {{\text{CD}}}\limits^ \to } \right| = \sqrt {{{\left( { – 6} \right)}^2} + {{\left( { – 8} \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right)\)

correct substitution into \(\frac{1}{2}bh\) A1

eg \(\frac{1}{2} \times 6 \times \sqrt {125} \)

area \( = 3\sqrt {125} ,\,\,15\sqrt 5 \) A1 N3

 

METHOD 2 (subtracting triangles)

recognizing that OB is altitude of either ΔOBD or ΔOBC(seen anywhere) M1

eg \(\frac{1}{2} \times \left| {\mathop {{\text{OB}}}\limits^ \to } \right| \times \left| {\mathop {{\text{BD}}}\limits^ \to } \right|,\,\,{\text{OB}} \bot {\text{BC}},\) sketch of triangle showing right angle at B

one correct vector \(\mathop {{\text{BD}}}\limits^ \to \) or \(\mathop {{\text{DB}}}\limits^ \to \) or \(\mathop {{\text{BC}}}\limits^ \to \) or \(\mathop {{\text{CB}}}\limits^ \to \) (seen anywhere) (A1)

eg \(\mathop {{\text{BD}}}\limits^ \to = \left( \begin{gathered}
\,6 \hfill \\
\,8 \hfill \\
– 5 \hfill \\
\end{gathered} \right)\), \(\mathop {{\text{CB}}}\limits^ \to = \left( \begin{gathered}
– 12 \hfill \\
– 16 \hfill \\
\,10 \hfill \\
\end{gathered} \right)\)

\(\left| {\mathop {{\text{OB}}}\limits^ \to } \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( { – 4} \right)}^2} + {{\left( { – 4} \right)}^2}} = \left( {\sqrt {36} } \right)\) (seen anywhere) (A1)

one correct magnitude of a base (seen anywhere) (A1)

\(\left| {\mathop {{\text{BD}}}\limits^ \to } \right| = \sqrt {{{\left( 6 \right)}^2} + {{\left( 8 \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right),\,\,\left| {\mathop {{\text{BC}}}\limits^ \to } \right| = \sqrt {144 + 256 + 100} = \left( {\sqrt {500} } \right)\)

correct working A1

eg \(\frac{1}{2} \times 6 \times \sqrt {500} – \frac{1}{2} \times 6 \times 5\sqrt 5 ,\,\,\frac{1}{2} \times 6 \times \sqrt {500} \times {\text{sin}}90 – \frac{1}{2} \times 6 \times 5\sqrt 5 \times {\text{sin}}90\)

area \( = 3\sqrt {125} ,\,\,15\sqrt 5 \) A1 N3

 

METHOD 3 (using \(\frac{1}{2}\)ab sin C with ΔOCD)

two correct side lengths (seen anywhere) (A1)(A1)

\(\left| {\mathop {{\text{OD}}}\limits^ \to } \right| = \sqrt {{{\left( 8 \right)}^2} + {{\left( 4 \right)}^2} + {{\left( { – 9} \right)}^2}} = \left( {\sqrt {161} } \right),\,\,\left| {\mathop {{\text{CD}}}\limits^ \to } \right| = \sqrt {{{\left( { – 6} \right)}^2} + {{\left( { – 8} \right)}^2} + {{\left( 5 \right)}^2}} = \left( {\sqrt {125} } \right),\,\) \(\left| {\mathop {{\text{OC}}}\limits^ \to } \right| = \sqrt {{{\left( {14} \right)}^2} + {{\left( {12} \right)}^2} + {{\left( { – 14} \right)}^2}} = \left( {\sqrt {536} } \right)\)

attempt to find cosine ratio (seen anywhere) M1
eg \(\frac{{536 – 286}}{{ – 2\sqrt {161} \sqrt {125} }},\,\,\frac{{{\text{OD}} \bullet {\text{DC}}}}{{\left| {OD} \right|\left| {DC} \right|}}\)

correct working for sine ratio A1

eg \(\frac{{{{\left( {125} \right)}^2}}}{{161 \times 125}} + {\text{si}}{{\text{n}}^2}\,D = 1\)

correct substitution into \(\frac{1}{2}ab\,\,{\text{sin}}\,C\) A1

eg \(0.5 \times \sqrt {161} \times \sqrt {125} \times \frac{6}{{\sqrt {161} }}\)

area \( = 3\sqrt {125} ,\,\,15\sqrt 5 \) A1 N3

[6 marks]

d.
Scroll to Top