IB DP Maths Topic 4.2 The angle between two vectors SL Paper 1

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

Consider the points A (1 , 5 , 4) , B (3 , 1 , 2) and D (3 , k , 2) , with (AD) perpendicular to (AB) .

The point O has coordinates (0 , 0 , 0) , point A has coordinates (1 , – 2 , 3) and point B has coordinates (– 3 , 4 , 2) .

Find

(i)     \(\overrightarrow {{\rm{AB}}} \) ;

(ii)    \(\overrightarrow {{\rm{AD}}} \) giving your answer in terms of k .

[3 marks]

[3]
a(i) and (ii).

Show that \(k = 7\) .

[3]
b.

The point C is such that \(\overrightarrow {{\rm{BC}}} = \frac{1}{2}\overrightarrow {{\rm{AD}}} \) .

Find the position vector of C.

[4]
c.

Find \(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C}}\) .

[3]
d.
Answer/Explanation

Markscheme

(i) evidence of combining vectors     (M1)

e.g. \(\overrightarrow {{\rm{AB}}} = \overrightarrow {{\rm{OB}}} – \overrightarrow {{\rm{OA}}} \)  (or \(\overrightarrow {{\rm{AD}}} = \overrightarrow {{\rm{AO}}} + \overrightarrow {{\rm{OD}}} \) in part (ii)) 

\(\overrightarrow {{\rm{AB}}} = \left( {\begin{array}{*{20}{c}}
2\\
{ – 4}\\
{ – 2}
\end{array}} \right)\)    A1     N2

(ii) \(\overrightarrow {{\rm{AD}}} = \left( {\begin{array}{*{20}{c}}
2\\
{k – 5}\\
{ – 2}
\end{array}} \right)\)     A1     N1

[3 marks]

a(i) and (ii).

evidence of using perpendicularity \( \Rightarrow \) scalar product = 0     (M1)

e.g. \(\left( {\begin{array}{*{20}{c}}
2\\
{ – 4}\\
{ – 2}
\end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}
2\\
{k – 5}\\
{ – 2}
\end{array}} \right) = 0\)

\(4 – 4(k – 5) + 4 = 0\)     A1

\( – 4k + 28 = 0\) (accept any correct equation clearly leading to \(k = 7\) )    A1

\(k = 7\)     AG     N0

[3 marks]

b.

\(\overrightarrow {{\rm{AD}}} = \left( {\begin{array}{*{20}{c}}
2\\
2\\
{ – 2}
\end{array}} \right)\)     (A1)

 \(\overrightarrow {{\rm{BC}}} = \left( {\begin{array}{*{20}{c}}
1\\
1\\
{ – 1}
\end{array}} \right)\)    A1

evidence of correct approach     (M1)

e.g. \(\overrightarrow {{\rm{OC}}} = \overrightarrow {{\rm{OB}}} + \overrightarrow {{\rm{BC}}} \) , \(\left( {\begin{array}{*{20}{c}}
3\\
1\\
2
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1\\
1\\
{ – 1}
\end{array}} \right)\) , \(\left( {\begin{array}{*{20}{c}}
{x – 3}\\
{y – 1}\\
{z – 2}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1\\
1\\
{ – 1}
\end{array}} \right)\)

\(\overrightarrow {{\rm{OC}}} = \left( {\begin{array}{*{20}{c}}
4\\
2\\
1
\end{array}} \right)\)     A1     N3

[4 marks]

c.

METHOD 1

choosing appropriate vectors, \(\overrightarrow {{\rm{BA}}} \) , \(\overrightarrow {{\rm{BC}}} \)     (A1)

finding the scalar product     M1

e.g. \( – 2(1) + 4(1) + 2( – 1)\) , \(2(1) + ( – 4)(1) + ( – 2)( – 1)\)

\(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C = 0}}\)     A1     N1

METHOD 2

\(\overrightarrow {{\rm{BC}}} \) parallel to \(\overrightarrow {{\rm{AD}}} \) (may show this on a diagram with points labelled)     R1

\(\overrightarrow {{\rm{BC}}} \bot \overrightarrow {{\rm{AB}}} \) (may show this on a diagram with points labelled)     R1

\({\rm{A}}\widehat {\rm{B}}{\rm{C}} = 90^\circ \)

\(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C = 0}}\)     A1     N1

[3 marks]

d.

Question

The vertices of the triangle PQR are defined by the position vectors

\(\overrightarrow {{\rm{OP}}}  = \left( {\begin{array}{*{20}{c}}
4\\
{ – 3}\\
1
\end{array}} \right)\) , \(\overrightarrow {{\rm{OQ}}}  = \left( {\begin{array}{*{20}{c}}
3\\
{ – 1}\\
2
\end{array}} \right)\) and \(\overrightarrow {{\rm{OR}}}  = \left( {\begin{array}{*{20}{c}}
6\\
{ – 1}\\
5
\end{array}} \right)\) .

Find

(i)     \(\overrightarrow {{\rm{PQ}}} \) ;

(ii)    \(\overrightarrow {{\rm{PR}}} \) .

[3]
a.

Show that \(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\) .

[7]
b.

(i)     Find \({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}}\) .

(ii)    Hence, find the area of triangle PQR, giving your answer in the form \(a\sqrt 3 \) .

[6]
c.
Answer/Explanation

Markscheme

(i) evidence of approach     (M1)

e.g. \(\overrightarrow {{\rm{PQ}}}  = \overrightarrow {{\rm{PO}}}  + \overrightarrow {{\rm{OQ}}} \) , \({\rm{Q}} – {\rm{P}}\)

\(\overrightarrow {{\rm{PQ}}}  = \left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
1
\end{array}} \right)\)    
A1     N2

(ii) \(\overrightarrow {{\rm{PR}}}  = \left( {\begin{array}{*{20}{c}}
2\\
2\\
4
\end{array}} \right)\)     A1     N1

[3 marks]

a.

METHOD 1

choosing correct vectors \(\overrightarrow {{\rm{PQ}}} \) and \(\overrightarrow {{\rm{PR}}} \)    (A1)(A1)

finding \(\overrightarrow {{\rm{PQ}}}  \bullet \overrightarrow {{\rm{PR}}} \) , \(\left| {\overrightarrow {{\rm{PQ}}} } \right|\) , \(\left| {\overrightarrow {{\rm{PR}}} } \right|\)    (A1) (A1)(A1)

\(\overrightarrow {{\rm{PQ}}}  \bullet \overrightarrow {{\rm{PR}}}  = – 2 + 4 + 4( = 6)\)

\(\left| {\overrightarrow {{\rm{PQ}}} } \right| = \sqrt {{{( – 1)}^2} + {2^2} + {1^2}} \) \(\left( { = \sqrt 6 } \right)\) , \(\left| {\overrightarrow {{\rm{PR}}} } \right| = \sqrt {{2^2} + {2^2} + {4^2}} \) \(\left( { = \sqrt {24} } \right)\)

substituting into formula for angle between two vectors     M1

e.g. \(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{6}{{\sqrt 6  \times \sqrt {24} }}\)

simplifying to expression clearly leading to \(\frac{1}{2}\)     A1

e.g. \(\frac{6}{{\sqrt 6  \times 2\sqrt 6 }}\) , \(\frac{6}{{\sqrt {144} }}\) , \(\frac{6}{{12}}\)

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\)     AG     N0

METHOD 2

evidence of choosing cosine rule (seen anywhere)     (M1)

\(\overrightarrow {{\rm{QR}}}  = \left( {\begin{array}{*{20}{c}}
3\\
0\\
3
\end{array}} \right)\)     A1

\(\left| {\overrightarrow {{\rm{QR}}} } \right| = \sqrt {18} \) , \(\left| {\overrightarrow {{\rm{PQ}}} } \right| = \sqrt 6 \) and \(\left| {\overrightarrow {{\rm{PR}}} } \right| = \sqrt {24} \)     (A1)(A1)(A1)

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{{{{\left( {\sqrt 6 } \right)}^2} + {{\left( {\sqrt {24} } \right)}^2} – {{\left( {\sqrt {18} } \right)}^2}}}{{2\sqrt 6  \times \sqrt {24} }}\)     A1

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{{6 + 24 – 18}}{{24}}\) \(\left( { = \frac{{12}}{{24}}} \right)\)     A1

\(\cos {\rm{R}}\widehat {\rm{P}}{\rm{Q}} = \frac{1}{2}\)      AG     N0

[7 marks]

b.

(i) METHOD 1

evidence of appropriate approach     (M1)

e.g. using \({\rm{si}}{{\rm{n}}^{\rm{2}}}{\rm{R}}\widehat {\rm{P}}{\rm{Q + co}}{{\rm{s}}^{\rm{2}}}{\rm{R}}\widehat {\rm{P}}{\rm{Q}} = 1\) , diagram

substituting correctly     (A1)

e.g. \({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}} = \sqrt {1 – {{\left( {\frac{1}{2}} \right)}^2}} \)

\({\rm{sinR}}\widehat {\rm{P}}{\rm{Q}} = \sqrt {\frac{3}{4}} \) \(\left( { = \frac{{\sqrt 3 }}{2}} \right)\)     A1     N3

METHOD 2

since \(\cos \widehat {\rm{P}} = \frac{1}{2}\) , \(\widehat {\rm{P}} = 60^\circ \)     (A1)

evidence of approach

e.g. drawing a right triangle, finding the missing side     (A1)

\(\sin \widehat {\rm{P}} = \frac{{\sqrt 3 }}{2}\)     A1     N3

(ii) evidence of appropriate approach      (M1)

e.g. attempt to substitute into \(\frac{1}{2}ab\sin C\)

correct substitution

e.g. area \( = \frac{1}{2}\sqrt 6  \times \sqrt {24}  \times \frac{{\sqrt 3 }}{2}\)     A1

area \( = 3\sqrt 3 \)     A1     N2

[6 marks]

c.

Question

Find the cosine of the angle between the two vectors \(3{\boldsymbol{i}} + 4{\boldsymbol{j}} + 5{\boldsymbol{k}}\) and \(4{\boldsymbol{i}} – 5{\boldsymbol{j}} – 3{\boldsymbol{k}}\) .

Answer/Explanation

Markscheme

finding scalar product and magnitudes     (A1)(A1)(A1)

scalar product \( = 12 – 20 – 15\) (\( = – 23\)) 

magnitudes \( = \sqrt {{3^2} + {4^2} + {5^2}} \) , \( = \sqrt {{4^2} + {{( – 5)}^2} + {{( – 3)}^2}} \) , \(\left( {\sqrt {50} ,\sqrt {50} } \right)\)

substitution into formula     M1

e.g. \(\cos \theta  = \frac{{12 – 20 – 15}}{{\left( {\sqrt {{3^2} + {4^2} + {5^2}} } \right) \times \left( {\sqrt {{4^2} + {{( – 5)}^2} + {{( – 3)}^2}} } \right)}}\)

\(\cos \theta  = – \frac{{23}}{{50}}\) \(( = – 0.46)\)     A2     N4

[6 marks]

Question

The following diagram shows the obtuse-angled triangle ABC such that \(\overrightarrow {{\rm{AB}}}  = \left( {\begin{array}{*{20}{c}}
{ – 3}\\
0\\
{ – 4}
\end{array}} \right)\) and \(\overrightarrow {{\rm{AC}}}  = \left( {\begin{array}{*{20}{c}}
{ – 2}\\
2\\
{ – 6}
\end{array}} \right)\) .


(i)     Write down \(\overrightarrow {{\rm{BA}}} \) .

(ii)    Find \(\overrightarrow {{\rm{BC}}} \) .

[3]
a(i) and (ii).

(i)     Find \(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C}}\) .

(ii)    Hence, find \({\rm{sinA}}\widehat {\rm{B}}{\rm{C}}\) .

[7]
b(i) and (ii).

The point D is such that \(\overrightarrow {{\rm{CD}}}  = \left( {\begin{array}{*{20}{c}}
{ – 4}\\
5\\
p
\end{array}} \right)\) , where \(p > 0\) .

(i)     Given that \(\overrightarrow {|{\rm{CD}}|} = \sqrt {50} \) , show that \(p = 3\) .

(ii)    Hence, show that \(\overrightarrow {{\rm{CD}}} \) is perpendicular to \(\overrightarrow {{\rm{BC}}} \) .

 

[6]
c(i) and (ii).
Answer/Explanation

Markscheme

(i) \(\overrightarrow {{\rm{BA}}}  = \left( {\begin{array}{*{20}{c}}
3\\
0\\
4
\end{array}} \right)\)     A1     N1

(ii) evidence of combining vectors     (M1)

e.g. \(\overrightarrow {{\rm{AB}}}  + \overrightarrow {{\rm{BC}}}  = \overrightarrow {{\rm{AC}}} \) , \(\overrightarrow {{\rm{BA}}}  + \overrightarrow {{\rm{AC}}} \) , \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
2\\
{ – 6}
\end{array}} \right) – \left( {\begin{array}{*{20}{c}}
{ – 3}\\
0\\
{ – 4}
\end{array}} \right)\)

\(\overrightarrow {{\rm{BC}}}  = \left( {\begin{array}{*{20}{c}}
1\\
2\\
{ – 2}
\end{array}} \right)\)    
A1     N2

[3 marks]

a(i) and (ii).

(i) METHOD 1

finding \(\overrightarrow {{\rm{BA}}}  \bullet \overrightarrow {{\rm{BC}}} \) , \(|\overrightarrow {{\rm{BA}}} |\) , \(|\overrightarrow {{\rm{BC}}} |\)

e.g. \(\overrightarrow {{\rm{BA}}}  \bullet \overrightarrow {{\rm{BC}}}  = 3 \times 1 + 0 + 4 \times – 2\) , \(\overrightarrow {|{\rm{BA}}} | = \sqrt {{3^2} + {4^2}} \) , \(\overrightarrow {|{\rm{BC}}} | = 3\)

substituting into formula for \(\cos \theta \)     M1

e.g. \(\frac{{3 \times 1 + 0 + 4 \times – 2}}{{3\sqrt {{3^2} + 0 + {4^2}} }}\) , \(\frac{{ – 5}}{{5 \times 3}}\)

\(cos {\rm{A}}\widehat {\rm{B}}{\rm{C}} = – \frac{5}{{15}}\) \(\left( { = – \frac{1}{3}} \right)\)     A1     N3

METHOD 2

finding \(|\overrightarrow {{\rm{AC}}} |\) , \(|\overrightarrow {{\rm{BA}}} |\) , \(|\overrightarrow {{\rm{BC}}} |\)     (A1)(A1)(A1)

e.g. \(|\overrightarrow {{\rm{AC}}} | = \sqrt {{2^2} + {2^2} + {6^2}} \) , \(|\overrightarrow {{\rm{BA}}} | = \sqrt {{3^2} + {4^2}} \) , \(|\overrightarrow {{\rm{BC}}} | = 3\)

substituting into cosine rule     M1

e.g. \(\frac{{{5^2} + {3^2} – {{\left( {\sqrt {44} } \right)}^2}}}{{2 \times 5 \times 3}}\) , \(\frac{{25 + 9 – 44}}{{30}}\)

\(\cos {\rm{A}}\widehat {\rm{B}}{\rm{C}} = – \frac{{10}}{{30}}\) \(\left( { = – \frac{1}{3}} \right)\)     A1     N3

(ii) evidence of using Pythagoras     (M1)

e.g. right-angled triangle with values, \({\sin ^2}x + {\cos ^2}x = 1\)

\(\sin {\rm{A}}\widehat {\rm{B}}{\rm{C}} = \frac{{\sqrt 8 }}{3}\) \(\left( { = \frac{{2\sqrt 2 }}{3}} \right)\)     A1     N2

[7 marks]

b(i) and (ii).

(i) attempt to find an expression for \(|\overrightarrow {{\rm{CD}}} |\)     (M1)

e.g. \(\sqrt {{{( – 4)}^2} + {5^2} + {p^2}} \) , \(|\overrightarrow {{\rm{CD}}} {|^2} = {4^2} + {5^2} + {p^2}\)

correct equation     A1

e.g. \(\sqrt {{{( – 4)}^2} + {5^2} + {p^2}}  = \sqrt {50} \) , \({4^2} + {5^2} + {p^2} = 50\)

\({p^2} = 9\)     A1

\(p = 3\)     AG     N0

(ii) evidence of scalar product     (M1)

e.g. \(\left( {\begin{array}{*{20}{c}}
{ – 4}\\
5\\
3
\end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}
1\\
2\\
{ – 2}
\end{array}} \right)\) , \(\overrightarrow {{\rm{CD}}}  \bullet \overrightarrow {{\rm{BC}}} \)

correct substitution

e.g. \( – 4 \times 1 + 5 \times 2 + 3 \times – 2\) , \( – 4 + 10 – 6\)     A1

\(\overrightarrow {{\rm{CD}}}  \bullet \overrightarrow {{\rm{BC}}}  = 0\)     A1

\(\overrightarrow {{\rm{CD}}} \) is perpendicular to \(\overrightarrow {{\rm{BC}}} \)     AG     N0

[6 marks]

c(i) and (ii).

Question

The following diagram shows triangle \(ABC\).

Let \(\overrightarrow {{\text{AB}}}  \bullet \overrightarrow {{\text{AC}}}  =  – 5\sqrt 3 \) and \(\left| {\overrightarrow {{\text{AB}}} } \right|\left| {\overrightarrow {{\text{AC}}} } \right| = 10\). Find the area of triangle \(ABC\).

Answer/Explanation

Markscheme

attempt to find \(\cos {\rm{C\hat AB}}\) (seen anywhere)     (M1)

eg\(\;\;\;\cos \theta  = \frac{{\overrightarrow {{\text{AB}}}  \bullet \overrightarrow {{\text{AC}}} }}{{\left| {\overrightarrow {{\text{AB}}} } \right|\left| {\overrightarrow {{\text{AC}}} } \right|}}\)

\(\cos {\rm{C\hat AB}} = \frac{{ – 5\sqrt 3 }}{{10}}\;\;\;\left( { =  – \frac{{\sqrt 3 }}{2}} \right)\)     A1

valid attempt to find \(\sin {\rm{C\hat AB}}\)     (M1)

eg\(\;\;\;\)triangle, Pythagorean identity, \({\rm{C\hat AB}} = \frac{{5\pi }}{6},{\text{ }}150^\circ \)

\(\sin {\rm{C\hat AB}} = \frac{1}{2}\)     (A1)

correct substitution into formula for area     (A1)

eg\(\;\;\;\frac{1}{2} \times 10 \times \frac{1}{2},{\text{ }}\frac{1}{2} \times 10 \times \sin \frac{\pi }{6}\)

\({\text{area}} = \frac{{10}}{4}\;\;\;\left( { = \frac{5}{2}} \right)\)     A1     N3

[6 marks]

Question

A line \(L\) passes through points \({\text{A}}( – 2,{\text{ }}4,{\text{ }}3)\) and \({\text{B}}( – 1,{\text{ }}3,{\text{ }}1)\).

(i)     Show that \(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\).

(ii)     Find \(\left| {\overrightarrow {{\text{AB}}} } \right|\).

[3]
a.

Find a vector equation for \(L\).

[2]
b.

The following diagram shows the line \(L\) and the origin \(O\). The point \(C\) also lies on \(L\).

Point \(C\) has position vector \(\left( {\begin{array}{*{20}{c}} 0 \\ y \\ { – 1} \end{array}} \right)\).

Show that \(y = 2\).

[4]
c.

(i)     Find \(\overrightarrow {{\text{OC}}}  \bullet \overrightarrow {{\text{AB}}} \).

(ii)     Hence, write down the size of the angle between \(C\) and \(L\).

[3]
d.

Hence or otherwise, find the area of triangle \(OAB\).

[4]
e.
Answer/Explanation

Markscheme

(i)     correct approach     A1

eg\(\;\;\;{\text{B}} – {\text{A, AO}} + {\text{OB}}\)

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\)     AG     N0

(ii)     correct substitution     (A1)

eg\(\;\;\;\sqrt {{{(1)}^2} + {{( – 1)}^2} + {{( – 2)}^2}} ,{\text{ }}\sqrt {1 + 1 + 4} \)

\(\left| {\overrightarrow {{\text{AB}}} } \right| = \sqrt 6 \)     A1     N2

[3 marks]

a.

any correct equation in the form \(r = a + tb\) (any parameter for \(t\))

where \(a\) is \(\left( {\begin{array}{*{20}{c}} { – 2} \\ 4 \\ 3 \end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}} { – 1} \\ 3 \\ 1 \end{array}} \right)\) and \(b\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\)     A2     N2

eg\(\;\;\;\(r\) = \left( {\begin{array}{*{20}{c}} { – 2} \\ 4 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right),{\text{ }}(x,{\text{ }}y,{\text{ }}z) = ( – 1,{\text{ }}3,{\text{ }}1) + t(1,{\text{ }} – 1,{\text{ }} – 2),{\text{ }}{\mathbf{r}} = \left( {\begin{array}{*{20}{c}} { – 1 + t} \\ {3 – t} \\ {1 – 2t} \end{array}} \right)\)

Note:     Award A1 for the form \({\mathbf{a}} + t{\mathbf{b}}\), A1 for the form \(L = {\mathbf{a}} + t{\mathbf{b}}\), A0 for the form \({\mathbf{r}} = {\mathbf{b}} + t{\mathbf{a}}\).

b.

METHOD 1

valid approach     (M1)

eg\(\;\;\;\left( {\begin{array}{*{20}{c}} { – 1} \\ 3 \\ 1 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0 \\ y \\ { – 1} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 0 \\ y \\ { – 1} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { – 2} \\ 4 \\ 3 \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\)

one correct equation from their approach     A1

eg\(\;\;\; – 1 + t = 0,{\text{ }}1 – 2t =  – 1,{\text{ }} – 2 + s = 0,{\text{ }}3 – 2s =  – 1\)

one correct value for their parameter and equation     A1

eg\(\;\;\;t = 1,{\text{ }}s = 2\)

correct substitution     A1

eg\(\;\;\;3 + 1( – 1),{\text{ }}4 + 2( – 1)\)

\(y = 2\)     AG     N0

METHOD 2

valid approach     (M1)

eg\(\;\;\;\overrightarrow {{\text{AC}}}  = k\overrightarrow {{\text{AB}}} \)

correct working     A1

eg\(\;\;\;\overrightarrow {{\text{AC}}}  = \left( {\begin{array}{*{20}{c}} 2 \\ {y – 4} \\ { – 4} \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} 2 \\ {y – 4} \\ { – 4} \end{array}} \right) = k\left( {\begin{array}{*{20}{c}} 1 \\ { – 1} \\ { – 2} \end{array}} \right)\)

\(k = 2\)     A1

correct substitution     A1

eg\(\;\;\;y – 4 =  – 2\)

\(y = 2\)     AG     N0

[4 marks]

c.

(i)     correct substitution     A1

eg\(\;\;\;0(1) + 2( – 1) – 1( – 2),{\text{ }}0 – 2 + 2\)

\(\overrightarrow {{\text{OC}}}  \bullet \overrightarrow {{\text{AB}}}  = 0\)     A1     N1

(ii)     \(9{0^ \circ }\) or \(\frac{\pi }{2}\)     A1     N1

[3 marks]

d.

METHOD 1 \({\text{(area}} = 0.5 \times {\text{height}} \times {\text{base)}}\)

\(\left| {\overrightarrow {{\text{OC}}} } \right| = \sqrt {0 + {2^2} + {{( – 1)}^2}} \;\;\;\left( { = \sqrt 5 } \right)\;\;\;\)(seen anywhere)     A1

valid approach     (M1)

eg\(\;\;\;\frac{1}{2} \times \left| {\overrightarrow {{\text{AB}}} } \right| \times \left| {\overrightarrow {{\text{OC}}} } \right|,{\text{ }}\left| {\overrightarrow {{\text{OC}}} } \right|\) is height of triangle

correct substitution     A1

eg\(\;\;\;\frac{1}{2} \times \sqrt 6  \times \sqrt {0 + {{(2)}^2} + {{( – 1)}^2}} ,{\text{ }}\frac{1}{2} \times \sqrt 6  \times \sqrt 5 \)

area is \(\frac{{\sqrt {30} }}{2}\)     A1     N2

METHOD 2 (difference of two areas)

one correct magnitude (seen anywhere)     A1

eg\(\;\;\;\left| {\overrightarrow {{\text{OC}}} } \right| = \sqrt {{2^2} + {{( – 1)}^2}} \;\;\;\left( { = \sqrt 5 } \right),\;\;\;\left| {\overrightarrow {{\text{AC}}} } \right| = \sqrt {4 + 4 + 16} \;\;\;\left( { = \sqrt {24} } \right),\;\;\;\left| {\overrightarrow {{\text{BC}}} } \right| = \sqrt 6 \)

valid approach     (M1)

eg\(\;\;\;\Delta {\text{OAC}} – \Delta {\text{OBC}}\)

correct substitution     A1

eg\(\;\;\;\frac{1}{2} \times \sqrt {24}  \times \sqrt 5  – \frac{1}{2} \times \sqrt 5  \times \sqrt 6 \)

area is \(\frac{{\sqrt {30} }}{2}\)     A1     N2

METHOD 3 \({\text{(area}} = \frac{1}{2}ab\sin C{\text{ for }}\Delta {\text{OAB)}}\)

one correct magnitude of \(\overrightarrow {{\text{OA}}} \) or \(\overrightarrow {{\text{OB}}} \) (seen anywhere)     A1

eg\(\;\;\;\left| {\overrightarrow {{\text{OA}}} } \right| = \sqrt {{{( – 2)}^2} + {4^2} + {3^2}} \;\;\;\left( { = \sqrt {29} } \right),\;\;\;\left| {\overrightarrow {{\text{OB}}} } \right| = \sqrt {1 + 9 + 1} \;\;\;\left( { = \sqrt {11} } \right)\)

valid attempt to find \(\cos \theta \) or \(\sin \theta \)     (M1)

eg\(\;\;\;\cos {\text{C}} = \frac{{ – 1 – 3 – 2}}{{\sqrt 6  \times \sqrt {11} }}\;\;\;\left( { = \frac{{ – 6}}{{\sqrt {66} }}} \right),\;\;\;29 = 6 + 11 – 2\sqrt 6 \sqrt {11} \cos \theta ,{\text{ }}\frac{{\sin \theta }}{{\sqrt 5 }} = \frac{{\sin 90}}{{\sqrt {29} }}\)

correct substitution into \(\frac{1}{2}ab\sin {\text{C}}\)     A1

eg\(\;\;\;\frac{1}{2} \times \sqrt 6  \times \sqrt {11}  \times \sqrt {1 – \frac{{36}}{{66}}} ,{\text{ }}0.5 \times \sqrt 6  \times \sqrt {29}  \times \frac{{\sqrt 5 }}{{\sqrt {29} }}\)

area is \(\frac{{\sqrt {30} }}{2}\)     A1     N2

[4 marks]

Total [16 marks]

e.

Question

A line \({L_1}\) passes through the points \({\text{A}}(0,{\text{ }} – 3,{\text{ }}1)\) and \({\text{B}}( – 2,{\text{ }}5,{\text{ }}3)\).

(i)     Show that \(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right)\).

(ii)     Write down a vector equation for \({L_1}\).

[3]
a.

A line \({L_2}\) has equation \({\mathbf{r}} = \left( {\begin{array}{*{20}{c}} { – 1} \\ 7 \\ { – 4} \end{array}} \right) + s\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ { – 1} \end{array}} \right)\). The lines \({L_1}\) and \({L_2}\) intersect at a point \(C\).

Show that the coordinates of \(C\) are \(( – 1,{\text{ }}1,{\text{ }}2)\).

[5]
b.

A point \(D\) lies on line \({L_2}\) so that \(\left| {\overrightarrow {{\text{CD}}} } \right| = \sqrt {18} \) and \(\overrightarrow {{\text{CA}}}  \bullet \overrightarrow {{\text{CD}}}  =  – 9\). Find \({\rm{A\hat CD}}\).

[7]
c.
Answer/Explanation

Markscheme

(i)     correct approach     A1

eg\(\;\;\;{\text{OB}} – {\text{OA, }}\left( {\begin{array}{*{20}{c}} { – 2} \\ 5 \\ 3 \end{array}} \right) – \left( {\begin{array}{*{20}{c}} 0 \\ { – 3} \\ 1 \end{array}} \right),{\text{ B}} – {\text{A}}\)

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right)\)     AG     N0

(ii)     any correct equation in the form \(r = a + \) t\(b\) (accept any parameter for \(t\))

where \(a\) is \(\left( {\begin{array}{*{20}{c}} 0 \\ { – 3} \\ 1 \end{array}} \right)\) or \(\left( {\begin{array}{*{20}{c}} { – 2} \\ 5 \\ 3 \end{array}} \right)\), and \(b\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right)\)     A2     N2

eg\(r\) = \left( {\begin{array}{*{20}{c}} 0 \\ { – 3} \\ 1 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right),\(r\) = \left( {\begin{array}{*{20}{c}} { – 2 – 2s} \\ {5 + 8s} \\ {3 + 2s} \end{array}} \right),\(r = 2i + 5j + 3k + \) t\(( – 2i + 8j + 2k)\)

Note:     Award A1 for the form \(a\) + t\(b\), A1 for the form \(L = \(a\) + t\(b\),

A0 for the form \(r\) = \(b\) + t\(a\).

[3 marks]

a.

valid approach     (M1)

eg\(\;\;\;\)equating lines, \({L_1} = {L_2}\)

one correct equation in one variable     A1

eg\(\;\;\; – 2t =  – 1,{\text{ }} – 2 – 2t =  – 1\)

valid attempt to solve     (M1)

eg\(\;\;\;2t = 1,{\text{ }} – 2t = 1\)

one correct parameter     A1

eg\(\;\;\;t = \frac{1}{2},{\text{ }}t =  – \frac{1}{2},{\text{ }}s =  – 6\)

correct substitution of either parameter     A1

eg\(\;\;\;r = \left( {\begin{array}{*{20}{c}} 0 \\ { – 3} \\ 1 \end{array}} \right) + \frac{1}{2}\left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { – 2} \\ 5 \\ 3 \end{array}} \right) – \frac{1}{2}\left( {\begin{array}{*{20}{c}} { – 2} \\ 8 \\ 2 \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} { – 1} \\ 7 \\ { – 4} \end{array}} \right) – 6\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ { – 1} \end{array}} \right)\)

the coordinates of \(C\) are \(( – 1,{\text{ }}1,{\text{ }}2)\), or position vector of \(C\) is \(\left( {\begin{array}{*{20}{c}} { – 1} \\ 1 \\ 2 \end{array}} \right)\)     AG     N0

Note:     If candidate uses the same parameter in both vector equations and working shown, award M1A1M1A0A0.

[5 marks]

b.

valid approach     (M1)

eg\(\;\;\;\)attempt to find \(\overrightarrow {{\text{CA}}} ,{\text{ }}\cos {\rm{A\hat CD}} = \frac{{\overrightarrow {{\text{CA}}}  \bullet \overrightarrow {{\text{CD}}} }}{{\left| {\overrightarrow {{\text{CA}}} } \right|\left| {\overrightarrow {{\text{CD}}} } \right|}},{\rm{ A\hat CD}}\) formed by \(\overrightarrow {{\text{CA}}} \) and \(\overrightarrow {{\text{CD}}} \)

\(\overrightarrow {{\text{CA}}}  = \left( {\begin{array}{*{20}{c}} 1 \\ { – 4} \\ { – 1} \end{array}} \right)\)     (A1)

Notes:     Exceptions to FT:

1 if candidate indicates that they are finding \(\overrightarrow {{\text{CA}}} \), but makes an error, award M1A0;

2 if candidate finds an incorrect vector (including \(\overrightarrow {{\text{AC}}} \)), award M0A0.

In both cases, if working shown, full FT may be awarded for subsequent correct FT work.

Award the final (A1) for simplification of their value for \({\rm{A\hat CD}}\).

Award the final A2 for finding their arc cos. If their value of cos does not allow them to find an angle, they cannot be awarded this A2.

finding \(\left| {\overrightarrow {{\text{CA}}} } \right|\) (may be seen in cosine formula)     A1

eg\(\;\;\;\sqrt {{1^2} + {{( – 4)}^2} + {{( – 1)}^2}} ,{\text{ }}\sqrt {18} \)

correct substitution into cosine formula     (A1)

eg\(\;\;\;\frac{{ – 9}}{{\sqrt {18} \sqrt {18} }}\)

finding \(\cos {\rm{A\hat CD}} – \frac{1}{2}\)     (A1)

\({\rm{A\hat CD}} = \frac{{2\pi }}{3}\;\;\;(120^\circ )\)     A2     N2

Notes:     Award A1 if additional answers are given.

Award A1 for answer \(\frac{\pi }{3}{\rm{ (60^\circ )}}\).

[7 marks]

Total [15 marks]

c.
Scroll to Top