IB DP Maths Topic 4.3 The angle between two lines SL Paper 1

Question

A line \({L_1}\) passes though points P(−1, 6, −1) and Q(0, 4, 1) .

A second line \({L_2}\) has equation \(r = \left( {\begin{array}{*{20}{c}}
4\\
2\\
{ – 1}
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
3\\
0\\
{ – 4}
\end{array}} \right)\) .

(i)     Show that \(\overrightarrow {{\rm{PQ}}}  = \left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
2
\end{array}} \right)\) .

(ii)    Hence, write down an equation for \({L_1}\) in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\) .

[3]
a(i) and (ii).

Find the cosine of the angle between \(\overrightarrow {{\rm{PQ}}} \) and \({L_2}\) .

[7]
b.

The lines \({L_1}\) and \({L_2}\) intersect at the point R. Find the coordinates of R.

[7]
c.
Answer/Explanation

Markscheme

(i) evidence of correct approach     A1

e.g. \(\overrightarrow {{\rm{PQ}}}  = \overrightarrow {{\rm{OQ}}}  – \overrightarrow {{\rm{OP}}} \) , \(Q – P\)

\(\overrightarrow {{\rm{PQ}}}  = \left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
2
\end{array}} \right)\)     AG     N0

(ii) any correct equation in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\)     A2     N2

where a is either \(\overrightarrow {{\rm{OP}}} \) or \(\overrightarrow {{\rm{OQ}}} \) and b is a scalar multiple of \(\overrightarrow {{\rm{PQ}}} \) 

e.g. \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
{ – 1}\\
6\\
{ – 1}
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
2
\end{array}} \right)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
  t \\
  {4 – 2t} \\
  {1 + 2t}
\end{array}} \right)\), \({\boldsymbol{r}} = 4{\boldsymbol{j}} + {\boldsymbol{k}} + t({\boldsymbol{i}} – 2{\boldsymbol{j}} + 2{\boldsymbol{k}})\)

[3 marks]

a(i) and (ii).

choosing a correct direction vector for \({L_2}\)     (A1)

e.g. \(\left( {\begin{array}{*{20}{c}}
3\\
0\\
{ – 4}
\end{array}} \right)\)

finding scalar products and magnitudes     (A1)(A1)(A1)

scalar product \( = 1(3) – 2(0) + 2( – 4)\) \(( = – 5)\)

magnitudes \( = \sqrt {{1^2} + {{( – 2)}^2} + {2^2}} \) \(( = 3)\) , \(\sqrt {{3^2} + {0^2} + {{( – 4)}^2}} \) \(( = 5)\)

substitution into formula     M1

e.g. \(\cos \theta  = \frac{{ – 5}}{{\sqrt 9  \times \sqrt {25} }}\)

\(\cos \theta  = – \frac{1}{3}\)     A2     N5

[7 marks]

b.

evidence of valid approach     (M1)

e.g. equating lines, \({L_1} = {L_2}\)

EITHER

one correct equation in one variable     A2

e.g. \(6 – 2t = 2\)

OR

two correct equations in two variables     A1A1

e.g. \(2t + 4s = 0\) , \(t – 3s = 5\)

THEN

attempt to solve     (M1)

one correct parameter     A1

e.g. \(t = 2\) , \(s = – 1\)

correct substitution of either parameter     (A1)

e.g. \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
4\\
2\\
{ – 1}
\end{array}} \right) + ( – 1)\left( {\begin{array}{*{20}{c}}
3\\
0\\
{ – 4}
\end{array}} \right)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
{ – 1}\\
6\\
{ – 1}
\end{array}} \right) + ( + 2)\left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
2
\end{array}} \right)\)

coordinates \({\text{R}}(1{\text{, }}2{\text{, }}3)\)     A1     N3

[7 marks]

c.

Question

The line \({L_1}\) passes through the points \(\rm{A}(2, 1, 4)\) and \(\rm{B}(1, 1, 5)\).

Another line \({L_2}\) has equation r = \(\left( \begin{array}{c}4\\7\\ – 4\end{array} \right) + s\left( \begin{array}{c}0\\ – 1\\1\end{array} \right)\) . The lines \({L_1}\) and \({L_2}\) intersect at the point P.

Show that \(\overrightarrow {{\text{AB}}}  = \)  \(\left( \begin{array}{c} – 1\\0\\1\end{array} \right)\)

[1]
a.

Hence, write down a direction vector for \({L_1}\);

[1]
b(i).

Hence, write down a vector equation for \({L_1}\).

[2]
b(ii).

Find the coordinates of P.

[6]
c.

Write down a direction vector for \({L_2}\).

[1]
d(i).

Hence, find the angle between \({L_1}\) and \({L_2}\).

[6]
d(ii).
Answer/Explanation

Markscheme

correct approach     A1

eg   \(\left( \begin{array}{c}1\\1\\5\end{array} \right) – \left( \begin{array}{l}2\\1\\4\end{array} \right)\), \({\text{AO}} + {\text{OB}}\), \(b – a\)

\(\overrightarrow {{\text{AB}}}  = \)  \(\left( \begin{array}{c} – 1\\0\\1\end{array} \right)\)    AG     N0

[1 mark]

a.

correct vector (or any multiple)     A1     N1

eg     d =  \(\left( \begin{array}{c} – 1\\0\\1\end{array} \right)\)

[1 mark]

b(i).

any correct equation in the form r = a + tb     (accept any parameter for t)

where a is \(\left( \begin{array}{c}2\\1\\4\end{array} \right)\) or \(\left( \begin{array}{c}1\\1\\5\end{array} \right)\) , and b is a scalar multiple of  \(\left( \begin{array}{c} – 1\\0\\1\end{array} \right)\)     A2     N2

eg   r = \(\left( \begin{array}{c}1\\1\\5\end{array} \right) + t\left( \begin{array}{c} – 1\\0\\1\end{array} \right),\left( \begin{array}{c}x\\y\\z\end{array} \right) = \left( \begin{array}{c}2 – s\\1\\4 + s\end{array} \right)\)

 

Note:     Award A1 for a + tb, A1 for \({L_1}\) = a + tb, A0 for r = b + ta.

 

[2 marks]

b(ii).

valid approach     (M1)

eg     \({r_1} = {r_2}\), \(\left( \begin{array}{c}2\\1\\4\end{array} \right) + t\left( \begin{array}{c} – 1\\0\\1\end{array} \right) = \left( \begin{array}{c}4\\7\\ – 4\end{array} \right) + s\left( \begin{array}{c}0\\ – 1\\1\end{array} \right)\)

one correct equation in one parameter     A1

eg     \(2 – t = 4, 1 = 7 – s, 1 – t = 4\)

attempt to solve     (M1)

eg     \(2 – 4 = t, s = 7 – 1, t = 1 – 4\)

one correct parameter     A1

eg     \(t = -2, s = 6, t = -3\),

attempt to substitute their parameter into vector equation     (M1)

eg     \(\left( \begin{array}{c}4\\7\\ – 4\end{array} \right) + 6\left( \begin{array}{c}0\\ – 1\\1\end{array} \right)\)

P(4, 1, 2)   (accept position vector)     A1     N2

[6 marks]

c.

correct direction vector for \({L_2}\)     A1     N1

eg     \(\left( \begin{array}{c}0\\-1\\ 1\end{array} \right)\), \(\left( \begin{array}{c}0\\2\\ – 2\end{array} \right)\)

[1 mark]

d(i).

correct scalar product and magnitudes for their direction vectors     (A1)(A1)(A1)

scalar product \( = 0 \times  – 1 +  – 1 \times 0 + 1 \times 1{\text{ }}( = 1)\)

magnitudes \( = \sqrt {{0^2} + {{( – 1)}^2} + {1^2}} ,{\text{ }}\sqrt { – {1^2} + {0^2} + {1^2}} \left( {\sqrt 2 ,{\text{ }}\sqrt 2 } \right)\)

attempt to substitute their values into formula     M1

eg   \(\frac{{0 + 0 + 1}}{{\left( {\sqrt {{0^2} + {{( – 1)}^2} + {1^2}} } \right) \times \left( {\sqrt { – {1^2} + {0^2} + {1^2}} } \right)}},{\text{ }}\frac{1}{{\sqrt 2  \times \sqrt 2 }}\)

correct value for cosine, \(\frac{1}{2}\)     A1

angle is \(\frac{\pi }{3}{\text{ }}( = {60^ \circ })\)     A1     N1

[6 marks]

d(ii).
Scroll to Top