IB DP Maths Topic 4.3 Vector equation of a line in two and three dimensions: r=a+tb SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The point O has coordinates (0 , 0 , 0) , point A has coordinates (1 , – 2 , 3) and point B has coordinates (– 3 , 4 , 2) .

(i)     Show that \(\overrightarrow {{\rm{AB}}} = \left( {\begin{array}{*{20}{c}}
{ – 4}\\
6\\
{ – 1}
\end{array}} \right)\) .

(ii)    Find \({\rm{B}}\widehat {\rm{A}}{\rm{O}}\) .

[8]
a(i) and (ii).

The line \({L_1}\) has equation \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ – 3}\\
4\\
2
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
{ – 4}\\
6\\
{ – 1}
\end{array}} \right)\) .

Write down the coordinates of two points on \({L_1}\) .

[2]
b.

The line \({L_2}\) passes through A and is parallel to \(\overrightarrow {{\rm{OB}}} \) .

(i)     Find a vector equation for \({L_2}\) , giving your answer in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\) . 

(ii)    Point \(C(k, – k,5)\) is on  \({L_2}\) . Find the coordinates of C.

[6]
c(i) and (ii).

The line \({L_3}\) has equation \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
3\\
{ – 8}\\
0
\end{array}} \right) + p\left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
{ – 1}
\end{array}} \right)\) and passes through the point C. 

 Find the value of p at C.

[2]
d.
Answer/Explanation

Markscheme

(i) evidence of approach     M1

e.g. \(\overrightarrow {{\rm{AO}}} + \overrightarrow {{\rm{OB}}} = \overrightarrow {{\rm{AB}}} \)

\(\overrightarrow {{\rm{AB}}} = \left( {\begin{array}{*{20}{c}}
{ – 4}\\
6\\
{ – 1}
\end{array}} \right)\)    AG     N0

(ii) for choosing correct vectors, (\(\overrightarrow {{\rm{AO}}} \) with \(\overrightarrow {{\rm{AB}}} \) or \(\overrightarrow {{\rm{OA}}} \) with \(\overrightarrow {{\rm{BA}}} \) )     (A1)(A1)

Note: Using \(\overrightarrow {{\rm{AO}}} \) with \(\overrightarrow {{\rm{BA}}} \) will lead to \(\pi  – 0.799\) . If they then say \({\rm{B}}\widehat {\rm{A}}{\rm{O}} = 0.799\) , this is a correct solution.

calculating \(\overrightarrow {{\rm{AO}}} \bullet \overrightarrow {{\rm{AB}}} \) , \(\left| {\overrightarrow {{\rm{AO}}} } \right|\) , \(\left| {\overrightarrow {{\rm{AB}}} } \right|\)     (A1)(A1)(A1)

e.g. \({d_1} \bullet {d_2} = ( – 1)( – 4) + (2)(6) + ( – 3)( – 1)( = 19)\)

\(\left| {{d_1}} \right| = \sqrt {{{( – 1)}^2} + {2^2} + {{( – 3)}^2}} ( = \sqrt {14} )\) , \(\left| {{d_2}} \right| = \sqrt {{{( – 4)}^2} + {6^2} + {{( – 1)}^2}} ( = \sqrt {53} )\)

evidence of using the formula to find the angle     M1

e.g. \(\cos \theta = \frac{{( – 1)( – 4) + (2)(6) + ( – 3)( – 1)}}{{\sqrt {{{( – 1)}^2} + {2^2} + {{( – 3)}^2}} \sqrt {{{( – 4)}^2} + {6^2} + {{( – 1)}^2}} }}\) , \(\frac{{19}}{{\sqrt {14} \sqrt {53} }}\) , \(0.69751 \ldots \)

\({\rm{B}}\widehat {\rm{A}}{\rm{O}} = 0.799\) radians (accept \(45.8^\circ \))     A1     N3

[8 marks]

a(i) and (ii).

two correct answers     A1A1

e.g. (1, \( – 2\), 3) , (\( – 3\), 4, 2) , (\( – 7\), 10, 1), (\( – 11\), 16, 0)     N2

[2 marks]

b.

(i) \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
3
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
{ – 3}\\
4\\
2
\end{array}} \right)\)     A2     N2

(ii) C on \({L_2}\) , so \(\left( {\begin{array}{*{20}{c}}
k\\
{ – k}\\
5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
3
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
{ – 3}\\
4\\
2
\end{array}} \right)\)     (M1)

evidence of equating components (A1)

e.g. \(1 – 3t = k\) , \( – 2 + 4t = – k\) , \(5 = 3 + 2t\)

one correct value \(t = 1\) , \(k = – 2\) (seen anywhere)     (A1)

coordinates of C are \(( – 2{\text{, }}2{\text{, }}5)\)     A1     N3

[6 marks]

c(i) and (ii).

for setting up one (or more) correct equation using \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
2\\
5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
3\\
{ – 8}\\
0
\end{array}} \right) + p\left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
{ – 1}
\end{array}} \right)\)     (M1)

e.g. \(3 + p = – 2\) , \( – 8 – 2p = 2\) , \( – p = 5\)

\(p = – 5\)     A1     N2

[2 marks]

d.

Question

Consider the points P(2, −1, 5) and Q(3, − 3, 8). Let \({L_1}\) be the line through P and Q.

Show that \(\overrightarrow {{\rm{PQ}}}  = \left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
3
\end{array}} \right)\) .

[1]
a.

The line \({L_1}\) may be represented by \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
  3 \\
  { – 3} \\
  8
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
  1 \\
  { – 2} \\
  3
\end{array}} \right)\) .

(i)     What information does the vector \(\left( {\begin{array}{*{20}{c}}
3\\
{ – 3}\\
8
\end{array}} \right)\) give about \({L_1}\) ?

(ii)    Write down another vector representation for \({L_1}\) using \(\left( {\begin{array}{*{20}{c}}
3\\
{ – 3}\\
8
\end{array}} \right)\) .

[3]
b.

The point \({\text{T}}( – 1{\text{, }}5{\text{, }}p)\) lies on \({L_1}\) .

Find the value of \(p\) .

[3]
c.

The point T also lies on \({L_2}\) with equation \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ – 3}\\
9\\
2
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
q
\end{array}} \right)\) .

Show that \(q = – 3\) .

[3]
d.

Let \(\theta \) be the obtuse angle between \({L_1}\) and \({L_2}\) . Calculate the size of \(\theta \) .

[7]
e.
Answer/Explanation

Markscheme

evidence of correct approach     A1

e.g. \(\overrightarrow {{\rm{PQ}}}  = \overrightarrow {{\rm{OQ}}} – \overrightarrow {{\rm{OP}}} \) , \(\left( {\begin{array}{*{20}{c}}
3\\
{ – 3}\\
8
\end{array}} \right) – \left( {\begin{array}{*{20}{c}}
2\\
{ – 1}\\
5
\end{array}} \right)\)

\(\overrightarrow {{\rm{PQ}}}  = \left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
3
\end{array}} \right)\)     AG     N0

[1 mark]

a.

(i) correct description     R1     N1

e.g. reference to \(\left( {\begin{array}{*{20}{c}}
3\\
{ – 3}\\
8
\end{array}} \right)\) being the position vector of a point on the line, a vector to the line, a point on the line.

(ii) any correct expression in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\)    A2     N2

where \({\boldsymbol{a}}\) is \(\left( {\begin{array}{*{20}{c}}
  3 \\
  { – 3} \\
  8
\end{array}} \right)\) , and \({\boldsymbol{b}}\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}}
  1 \\
  { – 2} \\
  3
\end{array}} \right)\)

e.g. \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
  3 \\
  { – 3} \\
  8
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
  { – 1} \\
  2 \\
  { – 3}
\end{array}} \right)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
  {3 + 2s} \\
  { – 3 – 4s} \\
  {8 + 6s}
\end{array}} \right)\)

[3 marks]

b.

one correct equation     (A1)

e.g. \(3 + s = – 1\) , \( – 3 – 2s = 5\)

\(s = – 4\)     A1

\(p = – 4\)     A1     N2

[3 marks]

c.

one correct equation     A1

e.g. \( – 3 + t = – 1\) , \(9 – 2t = 5\)

\(t = 2\)     A1

substituting \(t = 2\)

e.g. \(2 + 2q = – 4\) , \(2q =  – 6\)     A1

\(q = – 3\)     AG     N0

[3 marks]

d.

choosing correct direction vectors \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
3
\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 2}\\
{ – 3}
\end{array}} \right)\)     (A1)(A1)

finding correct scalar product and magnitudes     (A1)(A1)(A1)

scalar product \((1)(1) + ( – 2)( – 2) + ( – 3)(3)\)     \(( = – 4)\)

magnitudes \(\sqrt {{1^2} + {{( – 2)}^2} + {3^2}} \) \( = \sqrt {14} \) , \(\sqrt {{1^2} + {{( – 2)}^2} + {{( – 3)}^2}} \) \( = \sqrt {14} \)

evidence of substituting into scalar product     M1

e.g. \(\cos \theta  = \frac{{ – 4}}{{3.741 \ldots  \times 3.741 \ldots }}\)

\(\theta  = 1.86\) radians (or \(107^\circ \))    A1     N4

[7 marks]

e.

Question

In this question, distance is in metres.

Toy airplanes fly in a straight line at a constant speed. Airplane 1 passes through a point A.

Its position, p seconds after it has passed through A, is given by \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
3\\
{ – 4}\\
0
\end{array}} \right) + p\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\) .

(i)     Write down the coordinates of A.

(ii)    Find the speed of the airplane in \({\text{m}}{{\text{s}}^{ – 1}}\).

[4]
a(i) and (ii).

After seven seconds the airplane passes through a point B.

(i)     Find the coordinates of B.

(ii)    Find the distance the airplane has travelled during the seven seconds.

[5]
b(i) and (ii).

Airplane 2 passes through a point C. Its position q seconds after it passes through C is given by \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
{ – 5}\\
8
\end{array}} \right) + q\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right),a \in \mathbb{R}\) .

The angle between the flight paths of Airplane 1 and Airplane 2 is \({40^ \circ }\) . Find the two values of a.

[7]
c.
Answer/Explanation

Markscheme

(i) (3, \( – 4\), 0)     A1     N1

(ii) choosing velocity vector \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\)     (M1)

finding magnitude of velocity vector     (A1)

e.g. \(\sqrt {{{( – 2)}^2} + {3^2} + {1^2}} \) , \(\sqrt {4 + 9 + 1} \)

speed \(= 3.74\) \(\left( {\sqrt {14} } \right)\)     A1     N2

[4 marks]

a(i) and (ii).

(i) substituting \(p = 7\)     (M1)

\({\text{B}} = ( – 11{\text{, }}17{\text{, }}7)\)     A1     N2

(ii) METHOD 1

appropriate method to find \(\overrightarrow {{\rm{AB}}} \) or \(\overrightarrow {{\rm{BA}}} \)     (M1)

e.g. \(\overrightarrow {{\rm{AO}}}  + \overrightarrow {{\rm{OB}}} \) , \({\rm{A}} – {\rm{B}}\)

\(\overrightarrow {{\rm{AB}}}  = \left( {\begin{array}{*{20}{c}}
{ – 14}\\
{21}\\
7
\end{array}} \right)\) or \(\overrightarrow {{\rm{BA}}}  = \left( {\begin{array}{*{20}{c}}
{14}\\
{ – 21}\\
{ – 7}
\end{array}} \right)\)     (A1)

distance \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

METHOD 2

evidence of applying distance is speed × time     (M2)

e.g. \(3.74 \times 7\)

distance \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

METHOD 3

attempt to find AB2 , AB     (M1)

e.g. \({(3 – ( – 11))^2} + {( – 4 – 17)^2} + (0 – 7){)^2}\) , \(\sqrt {{{(3 – ( – 11))}^2} + {{( – 4 – 17)}^2} + (0 – 7){)^2}} \)

AB2 \(= 686\), AB \(= \sqrt {686} \)     (A1)

distance AB \(= 26.2\) \(\left( {7\sqrt {14} } \right)\)     A1     N3

[5 marks]

b(i) and (ii).

correct direction vectors \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right)\)     (A1)(A1)

\(\left| {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right| = \sqrt {{a^2} + 5} \) , \(\left( {\begin{array}{*{20}{c}}
{ – 2}\\
3\\
1
\end{array}} \right) \bullet \left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
a
\end{array}} \right) = a + 8\)      (A1)(A1)

substituting     M1

e.g. \(\cos {40^ \circ } = \frac{{a + 8}}{{\sqrt {14} \sqrt {{a^2} + 5} }}\)

\(a = 3.21\) , \(a = – 0.990\)     A1A1     N3

[7 marks]

c.

Question

Line \({L_1}\) passes through points \({\text{A}}(1{\text{, }} – 1{\text{, }}4)\) and \({\text{B}}(2{\text{, }} – 2{\text{, }}5)\) .

Line \({L_2}\) has equation \({\boldsymbol{r}} = \left( \begin{array}{l}
2\\
4\\
7
\end{array} \right) + s\left( \begin{array}{l}
2\\
1\\
3
\end{array} \right)\) .

Find \(\overrightarrow {{\rm{AB}}} \) .

[2]
a.

Find an equation for \({L_1}\) in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\) .

[2]
b.

Find the angle between \({L_1}\) and \({L_2}\) .

[7]
c.

The lines \({L_1}\) and \({L_2}\) intersect at point C. Find the coordinates of C.

[6]
d.
Answer/Explanation

Markscheme

appropriate approach     (M1)

e.g. \(\overrightarrow {{\rm{AO}}} + \overrightarrow {{\rm{OB}}} \) , \(B – A\)

\(\overrightarrow {{\rm{AB}}} = \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\)     A1     N2

[2 marks]

a.

any correct equation in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\)     A2 N2

where \({\boldsymbol{b}}\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\)

e.g. \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
4
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
{2 + t}\\
{ – 2 – t}\\
{5 + t}
\end{array}} \right)\) , \({\boldsymbol{r}} = 2{\boldsymbol{i}} – 2{\boldsymbol{j}} + 5{\boldsymbol{k}} + t({\boldsymbol{i}} – {\boldsymbol{j}} + {\boldsymbol{k}})\)

 [2 marks]

b.

choosing correct direction vectors \(\left( \begin{array}{l}
2\\
1\\
3
\end{array} \right)\) , \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\)     (A1)(A1)

finding scalar product and magnitudes     (A1)(A1)(A1)

scalar product \( = 1 \times 2 + – 1 \times 1 + 1 \times 3\) \(\left( { = 4} \right)\)

magnitudes \(\sqrt {{1^2} + {{( – 1)}^2} + {1^2}}{\text{  }}( = 1.73 \ldots )\) , \(\sqrt {4 + 1 + 9}{\text{  }}( = 3.74 \ldots )\)

substitution into \(\frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) (accept \(\theta = \frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) , but not \(\sin \theta = \frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) )     M1

e.g. \(\cos \theta = \frac{{1 \times 2 + – 1 \times 1 + 1 \times 3}}{{\sqrt {{1^2} + {{( – 1)}^2} + {1^2}} \sqrt {{2^2} + {1^2} + {3^2}} }}\) , \(\cos \theta = \frac{4}{{\sqrt {42} }}\)

\(\theta = 0.906\) \(({51.9^ \circ })\)     A1      N5

[7 marks]

c.

METHOD 1 (from \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  4
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  1
\end{array}} \right)\) )

appropriate approach     (M1)

e.g. \({\boldsymbol{p}} = {\boldsymbol{r}}\) , \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
4
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)t = \left( {\begin{array}{*{20}{c}}
2\\
4\\
7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2\\
1\\
3
\end{array}} \right)s\)

two correct equations    A1A1

e.g. \(1 + t = 2 + 2s\) , \( – 1 – t = 4 + s\) , \(4 + t = 7 + 3s\)

attempt to solve     (M1)

one correct parameter     A1

e.g. \(t = – 3\) , \(s = – 2\)

C is \(( – 2{\text{, }}2{\text{, }}1)\)     A1     N3

METHOD 2 (from \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
  2 \\
  { – 2} \\
  5
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
  1 \\
  { – 1} \\
  1
\end{array}} \right)\) )

appropriate approach     (M1)

e.g. \({\boldsymbol{p}} = {\boldsymbol{r}}\) , \(\left( {\begin{array}{*{20}{c}}
2\\
{ – 2}\\
5
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
4\\
7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2\\
1\\
3
\end{array}} \right)s\)

two correct equations     A1A1

e.g. \(2 + t = 2 + 2s\) , \( – 2 – t = 4 + s\) , \(5 + t = 7 + 3s\)

attempt to solve     (M1)

one correct parameter     A1

e.g. \(t = – 4\) , \(s = – 2\)

C is \(( – 2{\text{, }}2{\text{, }}1)\)     A1     N3

[6 marks]

d.

Question

The following diagram shows the cuboid (rectangular solid) OABCDEFG, where O is the origin, and \(\overrightarrow {{\rm{OA}}}  = 4\boldsymbol{i}\) , \(\overrightarrow {{\rm{OC}}}  = 3\boldsymbol{j}\) , \(\overrightarrow {{\rm{OD}}}  = 2\boldsymbol{k}\) .


(i)     Find \(\overrightarrow {{\rm{OB}}} \) .

(ii)    Find \(\overrightarrow {{\rm{OF}}} \) .

(iii)   Show that \(\overrightarrow {{\rm{AG}}} = – 4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}}\) .

[5]
a(i), (ii) and (iii).

Write down a vector equation for

(i)     the line OF;

(ii)    the line AG.

[4]
b(i) and (ii).

Find the obtuse angle between the lines OF and AG.

[7]
c.
Answer/Explanation

Markscheme

(i) valid approach     (M1)

e.g. \({\rm{OA + OB}}\)

\(\overrightarrow {{\rm{OB}}} = 4{\boldsymbol{i}} + 3{\boldsymbol{j}}\)     A1     N2

(ii) valid approach     (M1)

e.g. \(\overrightarrow {{\rm{OA}}} {\rm{ + }}\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{BF}}} \) ; \(\overrightarrow {{\rm{OB}}} {\rm{ + }}\overrightarrow {{\rm{BF}}} \) ; \(\overrightarrow {{\rm{OC}}} {\rm{ + }}\overrightarrow {{\rm{CG}}} {\rm{ + }}\overrightarrow {{\rm{GF}}} \)

\(\overrightarrow {{\rm{OF}}} = 4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}}\)     A1     N2

(iii) correct approach     A1

e.g. \(\overrightarrow {{\rm{AO}}} {\rm{ + }}\overrightarrow {{\rm{OC}}} {\rm{ + }}\overrightarrow {{\rm{CG}}} \) ; \(\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{BF}}} {\rm{ + }}\overrightarrow {{\rm{FG}}} \) ; \(\overrightarrow {{\rm{AB}}} {\rm{ + }}\overrightarrow {{\rm{BC}}} {\rm{ + }}\overrightarrow {{\rm{CG}}} \)

\(\overrightarrow {{\rm{AG}}} = – 4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}}\)     AG     N0

[5 marks]

a(i), (ii) and (iii).

(i) any correct equation for (OF) in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\)     A2     N2

where \({\boldsymbol{a}}\) is 0 or \(4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}}\) , and \({\boldsymbol{b}}\) is a scalar multiple of \(4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}}\)

e.g. \({\boldsymbol{r}} = t(4{\text{, }}3{\text{, }}2)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
{4t}\\
{3t}\\
{2t}
\end{array}} \right)\) , \({\boldsymbol{r}} = 4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}} + t(4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}})\)

(ii) any correct equation for (AG) in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + s{\boldsymbol{b}}\)     A2     N2

where \({\boldsymbol{a}}\) is \(4{\boldsymbol{i}}\) or \(3{\boldsymbol{j}} + 2{\boldsymbol{k}}\) and \({\boldsymbol{b}}\) is a scalar multiple of \( – 4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}}\)

e.g. \({\boldsymbol{r}} = (4{\text{, }}0{\text{, }}0) + s( – 4{\text{, }}3{\text{, }}2)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
{4 – 4s}\\
{3s}\\
{2s}
\end{array}} \right)\) , \({\boldsymbol{r}} = 3{\boldsymbol{j}} + 2{\boldsymbol{k}} + s( – 4{\boldsymbol{i}} + 3{\boldsymbol{j}} + 2{\boldsymbol{k}})\)

[4 marks]

b(i) and (ii).

choosing correct direction vectors, \(\overrightarrow {{\rm{OF}}} \) and \(\overrightarrow {{\rm{AG}}} \)     (A1)(A1)

scalar product \( = – 16 + 9 + 4\) \(( = – 3)\)     (A1)

magnitudes \(\sqrt {{4^2} + {3^2} + {2^2}} \) , \(\sqrt {{{( – 4)}^2} + {3^2} + {2^2}} \) , \(\left( {\sqrt {29} ,\sqrt {29} } \right)\)     (A1)(A1)

substitution into formula     M1

e.g. \(\cos \theta  = \frac{{ – 16 + 9 + 4}}{{\left( {\sqrt {{4^2} + {3^2} + {2^2}} } \right) \times \sqrt {{{( – 4)}^2} + {3^2} + {2^2}} }} = \left( { – \frac{3}{{29}}} \right)\)

\(95.93777^\circ \) , \(1.67443{\text{ radians}}\)

\(\theta  = 95.9^\circ \) or \(1.67\)     A1     N4

[7 marks]

c.

Question

Consider the points \({\text{A }}(1,{\text{ }}5,{\text{ }} – 7)\) and \({\text{B }}( – 9,{\text{ }}9,{\text{ }} – 6)\).

Let C be a point such that \(\overrightarrow {{\text{AC}}} = \left( {\begin{array}{*{20}{c}} 6 \\ { – 4} \\ 0 \end{array}} \right)\).

The line \(L\) passes through B and is parallel to (AC).

Find \(\overrightarrow {{\text{AB}}} \).

[2]
a.

Find the coordinates of C.

[2]
b.

Write down a vector equation for \(L\).

[2]
c.

Given that \(\left| {\overrightarrow {{\text{AB}}} } \right| = k\left| {\overrightarrow {{\text{AC}}} } \right|\), find \(k\).

[3]
d.

The point D lies on \(L\) such that \(\left| {\overrightarrow {{\text{AB}}} } \right| = \left| {\overrightarrow {{\text{BD}}} } \right|\). Find the possible coordinates of D.

[6]
e.
Answer/Explanation

Markscheme

valid approach     (M1)

eg\(\,\,\,\,\,\)\({\text{B}} – {\text{A}},{\text{ AO}} + {\text{OB}},{\text{ }}\left( {\begin{array}{*{20}{c}} { – 9} \\ 9 \\ { – 6} \end{array}} \right) – \left( {\begin{array}{*{20}{c}} 1 \\ 5 \\ { – 7} \end{array}} \right)\)

\(\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} { – 10} \\ 4 \\ 1 \end{array}} \right)\)     A1     N2

[2 marks]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\({\text{OC}} = {\text{OA}} + {\text{AC}},{\text{ }}\left( {\begin{array}{*{20}{c}} {1 + 6} \\ {5 – 4} \\ { – 7 + 0} \end{array}} \right)\)

\({\text{C}}(7,{\text{ }}1,{\text{ }} – 7)\)    A1     N2

[2 marks]

b.

any correct equation in the form r \( = \) a \( + t\)b (accept any parameter for \(t\)

where a is \(\left( {\begin{array}{*{20}{c}} { – 9} \\ 9 \\ { – 6} \end{array}} \right)\), and b is a scalar multiple of \(\left( {\begin{array}{*{20}{c}} 6 \\ { – 4} \\ 0 \end{array}} \right)\)     A2     N2

eg\(\,\,\,\,\,\)r \( = \left( {\begin{array}{*{20}{c}} { – 9} \\ 9 \\ { – 6} \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 6 \\ { – 4} \\ 0 \end{array}} \right)\), r \( =  – 9\)i \( + 9\)j \( – 6\)k \( + s(6\)i \( – 4\)j \( + 0\)k\()\)

[2 marks]

c.

correct magnitudes     (A1)(A1)

eg\(\,\,\,\,\,\)\(\sqrt {{{( – 10)}^2} + {{( – 4)}^2} + {1^2}} ,{\text{ }}\sqrt {{6^2} + {{( – 4)}^2} + {{(0)}^2}} ,{\text{ }}\sqrt {{{10}^2} + {4^2} + 1} ,{\text{ }}\sqrt {{6^2} + {4^2}} \)

\(k = \frac{{\sqrt {117} }}{{\sqrt {52} }}{\text{ }}( = 1.5){\text{ }}({\text{exact}})\)    A1     N3

[3 marks]

d.

correct interpretation of relationship between magnitudes     (A1)

eg\(\,\,\,\,\,\)\({\text{AB}} = 1.5{\text{AC}},{\text{ BD}} = 1.5{\text{AC}},{\text{ }}\sqrt {117}  = \sqrt {52{t^2}} \)

recognizing D can have two positions (may be seen in working)     R1

eg\(\,\,\,\,\,\)\(\overrightarrow {{\text{BD}}}  = 1.5\overrightarrow {{\text{AC}}} \) and \(\overrightarrow {{\text{BD}}}  =  – 1.5\overrightarrow {{\text{AC}}} ,{\text{ }}t =  \pm 1.5\), diagram, two answers

valid approach (seen anywhere)     (M1)

eg\(\,\,\,\,\,\)\(\overrightarrow {{\text{OD}}} = \overrightarrow {{\text{OB}}} + \overrightarrow {{\text{BD}}} {\text{, }}\left( {\begin{array}{*{20}{c}} { – 9} \\ 9 \\ { – 6} \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 6 \\ { – 4} \\ 0 \end{array}} \right),{\text{ }}\overrightarrow {{\text{BD}}} = k\left( {\begin{array}{*{20}{c}} 6 \\ { – 4} \\ 0 \end{array}} \right)\)

one correct expression for \(\overrightarrow {{\text{OD}}} \)     (A1)

eg\(\,\,\,\,\,\)\(\overrightarrow {{\text{OD}}} = \left( {\begin{array}{*{20}{c}} { – 9} \\ 9 \\ { – 6} \end{array}} \right) + 1.5\left( {\begin{array}{*{20}{c}} 6 \\ { – 4} \\ 0 \end{array}} \right),{\text{ }}\left( {\begin{array}{*{20}{c}} { – 9} \\ 9 \\ { – 6} \end{array}} \right) – 1.5\left( {\begin{array}{*{20}{c}} 6 \\ { – 4} \\ 0 \end{array}} \right)\)

\({\text{D}} = (0,{\text{ }}3,{\text{ }} – 6),{\text{ D}} = ( – 18,{\text{ }}15,{\text{ }} – 6)\) (accept position vectors)     A1A1     N3

[6 marks]

e.

Question

Consider the lines \({L_1}\) , \({L_2}\) , \({L_2}\) , and \({L_4}\) , with respective equations.

\({L_1}\) : \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1\\
2\\
3
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
3\\
{ – 2}\\
1
\end{array}} \right)\)

\({L_2}\)  : \(\left( \begin{array}{l}
x\\
y\\
z
\end{array} \right) = \left( \begin{array}{l}
1\\
2\\
3
\end{array} \right) + p\left( \begin{array}{l}
3\\
2\\
1
\end{array} \right)\)

\({L_3}\) : \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0\\
1\\
0
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
{ – a}
\end{array}} \right)\)

\({L_4}\) : \(\left( {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right) = q\left( {\begin{array}{*{20}{c}}
{ – 6}\\
4\\
{ – 2}
\end{array}} \right)\)

Write down the line that is parallel to \({L_4}\) .

[1]
a.

Write down the position vector of the point of intersection of \({L_1}\) and \({L_2}\) .

[1]
b.

Given that \({L_1}\) is perpendicular to \({L_3}\) , find the value of a .

[5]
c.
Answer/Explanation

Markscheme

\({L_1}\)     A1     N1

[1 mark]

a.

\(\left( \begin{array}{l}
1\\
2\\
3
\end{array} \right)\)     A1     N1

[1 mark]

b.

choosing correct direction vectors     A1A1

e.g. \(\left( {\begin{array}{*{20}{c}}
3\\
{ – 2}\\
1
\end{array}} \right)\) , \(\left( {\begin{array}{*{20}{c}}
{ – 1}\\
2\\
{ – a}
\end{array}} \right)\)

recognizing that \({\boldsymbol{a}} \bullet {\boldsymbol{b}} = 0\)     M1

correct substitution     A1

e.g. \( – 3 – 4 – a = 0\)

\(a = – 7\)     A1     N3

[5 marks]

c.
Scroll to Top