Question
The line L1 is represented by \({{\boldsymbol{r}}_1} = \left( {\begin{array}{*{20}{c}}
2\\
5\\
3
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
1\\
2\\
3
\end{array}} \right)\) and the line L2 by \({{\boldsymbol{r}}_2} = \left( {\begin{array}{*{20}{c}}
3\\
{ – 3}\\
8
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
{ – 1}\\
3\\
{ – 4}
\end{array}} \right)\) .
The lines L1 and L2 intersect at point T. Find the coordinates of T.
Answer/Explanation
Markscheme
evidence of equating vectors (M1)
e.g. \({L_1} = {L_2}\)
for any two correct equations A1A1
e.g. \(2 + s = 3 – t\) , \(5 + 2s = – 3 + 3t\) , \(3 + 3s = 8 – 4t\)
attempting to solve the equations (M1)
finding one correct parameter \((2 = – 1{\text{, }}t = 2)\) A1
the coordinates of T are \((1{\text{, }}3{\text{, }}0)\) A1 N3
[6 marks]
Question
Two lines with equations \({{\boldsymbol{r}}_1} = \left( {\begin{array}{*{20}{c}}
2\\
3\\
{ – 1}
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
5\\
{ – 3}\\
2
\end{array}} \right)\) and \({{\boldsymbol{r}}_2} = \left( {\begin{array}{*{20}{c}}
9\\
2\\
2
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
{ – 3}\\
5\\
{ – 1}
\end{array}} \right)\) intersect at the point P. Find the coordinates of P.
Answer/Explanation
Markscheme
evidence of appropriate approach (M1)
e.g. \(\left( {\begin{array}{*{20}{c}}
2\\
3\\
{ – 1}
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
5\\
{ – 3}\\
2
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
9\\
2\\
2
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
{ – 3}\\
5\\
{ – 1}
\end{array}} \right)\)
two correct equations A1A1
e.g. \(2 + 5s = 9 – 3t\) , \(3 – 3s = 2 + 5t\) , \( – 1 + 2s = 2 – t\)
attempting to solve the equations (M1)
one correct parameter \(s = 2\) , \(t = – 1\) A1
P is \((12, – 3,3)\) (accept \(\left( {\begin{array}{*{20}{c}}
{12}\\
{ – 3}\\
3
\end{array}} \right)\)) A1 N3
[6 marks]
Question
Line \({L_1}\) passes through points \({\text{A}}(1{\text{, }} – 1{\text{, }}4)\) and \({\text{B}}(2{\text{, }} – 2{\text{, }}5)\) .
Line \({L_2}\) has equation \({\boldsymbol{r}} = \left( \begin{array}{l}
2\\
4\\
7
\end{array} \right) + s\left( \begin{array}{l}
2\\
1\\
3
\end{array} \right)\) .
Find \(\overrightarrow {{\rm{AB}}} \) .
Find an equation for \({L_1}\) in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\) .
Find the angle between \({L_1}\) and \({L_2}\) .
The lines \({L_1}\) and \({L_2}\) intersect at point C. Find the coordinates of C.
Answer/Explanation
Markscheme
appropriate approach (M1)
e.g. \(\overrightarrow {{\rm{AO}}} + \overrightarrow {{\rm{OB}}} \) , \(B – A\)
\(\overrightarrow {{\rm{AB}}} = \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\) A1 N2
[2 marks]
any correct equation in the form \({\boldsymbol{r}} = {\boldsymbol{a}} + t{\boldsymbol{b}}\) A2 N2
where \({\boldsymbol{b}}\) is a scalar multiple of \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\)
e.g. \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
4
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\) , \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
{2 + t}\\
{ – 2 – t}\\
{5 + t}
\end{array}} \right)\) , \({\boldsymbol{r}} = 2{\boldsymbol{i}} – 2{\boldsymbol{j}} + 5{\boldsymbol{k}} + t({\boldsymbol{i}} – {\boldsymbol{j}} + {\boldsymbol{k}})\)
[2 marks]
choosing correct direction vectors \(\left( \begin{array}{l}
2\\
1\\
3
\end{array} \right)\) , \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)\) (A1)(A1)
finding scalar product and magnitudes (A1)(A1)(A1)
scalar product \( = 1 \times 2 + – 1 \times 1 + 1 \times 3\) \(\left( { = 4} \right)\)
magnitudes \(\sqrt {{1^2} + {{( – 1)}^2} + {1^2}}{\text{ }}( = 1.73 \ldots )\) , \(\sqrt {4 + 1 + 9}{\text{ }}( = 3.74 \ldots )\)
substitution into \(\frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) (accept \(\theta = \frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) , but not \(\sin \theta = \frac{{{\boldsymbol{u}} \bullet {\boldsymbol{v}}}}{{|{\boldsymbol{u}}||{\boldsymbol{v}}|}}\) ) M1
e.g. \(\cos \theta = \frac{{1 \times 2 + – 1 \times 1 + 1 \times 3}}{{\sqrt {{1^2} + {{( – 1)}^2} + {1^2}} \sqrt {{2^2} + {1^2} + {3^2}} }}\) , \(\cos \theta = \frac{4}{{\sqrt {42} }}\)
\(\theta = 0.906\) \(({51.9^ \circ })\) A1 N5
[7 marks]
METHOD 1 (from \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
1 \\
{ – 1} \\
4
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1 \\
{ – 1} \\
1
\end{array}} \right)\) )
appropriate approach (M1)
e.g. \({\boldsymbol{p}} = {\boldsymbol{r}}\) , \(\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
4
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right)t = \left( {\begin{array}{*{20}{c}}
2\\
4\\
7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2\\
1\\
3
\end{array}} \right)s\)
two correct equations A1A1
e.g. \(1 + t = 2 + 2s\) , \( – 1 – t = 4 + s\) , \(4 + t = 7 + 3s\)
attempt to solve (M1)
one correct parameter A1
e.g. \(t = – 3\) , \(s = – 2\)
C is \(( – 2{\text{, }}2{\text{, }}1)\) A1 N3
METHOD 2 (from \({\boldsymbol{r}} = \left( {\begin{array}{*{20}{c}}
2 \\
{ – 2} \\
5
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1 \\
{ – 1} \\
1
\end{array}} \right)\) )
appropriate approach (M1)
e.g. \({\boldsymbol{p}} = {\boldsymbol{r}}\) , \(\left( {\begin{array}{*{20}{c}}
2\\
{ – 2}\\
5
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
1\\
{ – 1}\\
1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
4\\
7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
2\\
1\\
3
\end{array}} \right)s\)
two correct equations A1A1
e.g. \(2 + t = 2 + 2s\) , \( – 2 – t = 4 + s\) , \(5 + t = 7 + 3s\)
attempt to solve (M1)
one correct parameter A1
e.g. \(t = – 4\) , \(s = – 2\)
C is \(( – 2{\text{, }}2{\text{, }}1)\) A1 N3
[6 marks]
Question
Line \({L_1}\) has equation \({\boldsymbol{r}_1} = \left( {\begin{array}{*{20}{c}}
{10}\\
6\\
{ – 1}
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
2\\
{ – 5}\\
{ – 2}
\end{array}} \right)\) and line \({L_2}\) has equation \({\boldsymbol{r}_2} = \left( {\begin{array}{*{20}{c}}
2\\
1\\
{ – 3}
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
3\\
5\\
2
\end{array}} \right)\) .
Lines \({L_1}\) and \({L_2}\) intersect at point A. Find the coordinates of A.
Answer/Explanation
Markscheme
appropriate approach (M1)
eg \(\left( {\begin{array}{*{20}{c}}
{10}\\
6\\
{ – 1}
\end{array}} \right) + s\left( {\begin{array}{*{20}{c}}
2\\
{ – 5}\\
{ – 2}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
2\\
1\\
{ – 3}
\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}
3\\
5\\
2
\end{array}} \right)\) , \({L_1} = {L_2}\)
any two correct equations A1A1
eg \(10 + 2s = 2 + 3t\) , \(6 – 5s = 1 + 5t\) , \( – 1 – 2s = – 3 + 2t\)
attempt to solve (M1)
eg substituting one equation into another
one correct parameter A1
eg \(s = – 1\) , \(t = 2\)
correct substitution (A1)
eg \(2 + 3(2)\) , \(1 + 5(2)\) , \( – 3 + 2(2)\)
A \( = \) (\(8\), \(11\), \(1\)) (accept column vector) A1 N4
[7 marks]
Question
Consider the lines \({L_1}\) and \({L_2}\) with equations \({L_1}\) : \(\boldsymbol{r}=\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ – 1\end{array} \right)\) and \({L_2}\) : \(\boldsymbol{r} = \left( \begin{array}{c}1\\1\\ – 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\).
The lines intersect at point \(\rm{P}\).
Find the coordinates of \({\text{P}}\).
Show that the lines are perpendicular.
The point \({\text{Q}}(7, 5, 3)\) lies on \({L_1}\). The point \({\text{R}}\) is the reflection of \({\text{Q}}\) in the line \({L_2}\).
Find the coordinates of \({\text{R}}\).
Answer/Explanation
Markscheme
appropriate approach (M1)
eg \(\left( \begin{array}{c}11\\8\\2\end{array} \right) + s\left( \begin{array}{c}4\\3\\ – 1\end{array} \right) = \left( \begin{array}{c}1\\1\\ – 7\end{array} \right) + t\left( \begin{array}{c}2\\1\\11\end{array} \right)\), \({L_1} = {L_2}\)
any two correct equations A1A1
eg \(11 + 4s = 1 + 2t,{\text{ }}8 + 3s = 1 + t,{\text{ }}2 – s = – 7 + 11t\)
attempt to solve system of equations (M1)
eg \(10 + 4s = 2(7 + 3s), \left\{ {\begin{array}{*{20}{c}} {4s – 2t = – 10} \\ {3s – t = – 7} \end{array}} \right.\)
one correct parameter A1
eg \(s = – 2,{\text{ }}t = 1\)
\({\text{P}}(3, 2, 4)\) (accept position vector) A1 N3
[6 marks]
choosing correct direction vectors for \({L_1}\) and \({L_2}\) (A1)(A1)
eg \(\left( {\begin{array}{*{20}{c}} 4 \\ 3 \\ { – 1} \end{array}} \right),\left( {\begin{array}{*{20}{c}} 2 \\ 1 \\ {11} \end{array}} \right)\) (or any scalar multiple)
evidence of scalar product (with any vectors) (M1)
eg \(a \cdot b\), \(\left( \begin{array}{c}4\\3\\ – 1\end{array} \right) \bullet \left( \begin{array}{c}2\\1\\11\end{array} \right)\)
correct substitution A1
eg \(4(2) + 3(1) + ( – 1)(11),{\text{ }}8 + 3 – 11\)
calculating \(a \cdot b = 0\) A1
Note: Do not award the final A1 without evidence of calculation.
vectors are perpendicular AG N0
[5 marks]
Note: Candidates may take different approaches, which do not necessarily involve vectors.
In particular, most of the working could be done on a diagram. Award marks in line with the markscheme.
METHOD 1
attempt to find \(\overrightarrow {{\text{QP}}} \) or \(\overrightarrow {{\text{PQ}}} \) (M1)
correct working (may be seen on diagram) A1
eg \(\overrightarrow {{\text{QP}}} \) = \(\left( \begin{array}{c} – 4\\ – 3\\1\end{array} \right)\), \(\overrightarrow {{\text{PQ}}} \) = \(\left( \begin{array}{c}7\\5\\3\end{array} \right) – \left( \begin{array}{c}3\\2\\4\end{array} \right)\)
recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere) (R1)
eg on diagram
\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere) (R1)
eg \(\overrightarrow {{\text{QP}}} = \overrightarrow {{\text{PR}}} \), marked on diagram
correct working (A1)
eg \(\left( \begin{array}{c}3\\2\\4\end{array} \right) – \left( \begin{array}{c}7\\5\\3\end{array} \right) = \left( \begin{array}{c}x\\y\\z\end{array} \right) – \left( \begin{array}{c}3\\2\\4\end{array} \right),\left( \begin{array}{c} – 4\\ – 3\\1\end{array} \right) + \left( \begin{array}{c}3\\2\\4\end{array} \right)\)
\({\text{R}}(–1, –1, 5)\) (accept position vector) A1 N3
METHOD 2
recognizing \({\text{R}}\) is on \({L_1}\) (seen anywhere) (R1)
eg on diagram
\({\text{Q}}\) and \({\text{R}}\) are equidistant from \({\text{P}}\) (seen anywhere) (R1)
eg \({\text{P}}\) midpoint of \({\text{QR}}\), marked on diagram
valid approach to find one coordinate of mid-point (M1)
eg \({x_p} = \frac{{{x_Q} + {x_R}}}{2},{\text{ }}2{y_p} = {y_Q} + {y_R},{\text{ }}\frac{1}{2}\left( {{z_Q} + {z_R}} \right)\)
one correct substitution A1
eg \({x_R} = 3 + (3 – 7),{\text{ }}2 = \frac{{5 + {y_R}}}{2},{\text{ }}4 = \frac{1}{2}(z + 3)\)
correct working for one coordinate (A1)
eg \({x_R} = 3 – 4,{\text{ }}4 – 5 = {y_R},{\text{ }}8 = (z + 3)\)
\({\text{R}} (-1, -1, 5)\) (accept position vector) A1 N3
[6 marks]