Home / IBDP Maths analysis and approaches Topic: AHL 3.13 Use of normal vector to obtain the form r⋅n=a⋅n HL Paper 1

IBDP Maths analysis and approaches Topic: AHL 3.13 Use of normal vector to obtain the form r⋅n=a⋅n HL Paper 1

Question

The points A(1, 2, 1) , B(−3, 1, 4) , C(5, −1, 2) and D(5, 3, 7) are the vertices of a tetrahedron.

a.Find the vectors \(\overrightarrow {{\text{AB}}} \) and \(\overrightarrow {{\text{AC}}} \).[2]

 

b.Find the Cartesian equation of the plane \(\prod \) that contains the face ABC.[4]

 
▶️Answer/Explanation

Markscheme

\(\overrightarrow {{\text{AB}}}  = \left( {\begin{array}{*{20}{c}}
  { – 4} \\
  { – 1} \\
  3
\end{array}} \right)\), \(\overrightarrow {{\text{AC}}}  = \left( {\begin{array}{*{20}{c}}
  4 \\
  { – 3} \\
  1
\end{array}} \right)\)     A1A1

Note: Accept row vectors.

 

[2 marks]

a.

\(\overrightarrow {{\text{AB}}}  \times \overrightarrow {{\text{AC}}}  = \left| {\begin{array}{*{20}{c}}
  {\boldsymbol{i}}&{\boldsymbol{j}}&{\boldsymbol{k}} \\
  { – 4}&{ – 1}&3 \\
  4&{ – 3}&1
\end{array}} \right| = \left( {\begin{array}{*{20}{c}}
  8 \\
  {16} \\
  {16}
\end{array}} \right)\)     M1A1

normal \({\boldsymbol{n}} = \left( {\begin{array}{*{20}{c}}
  1 \\
  2 \\
  2
\end{array}} \right)\) so \({\boldsymbol{r}} \cdot \left( {\begin{array}{*{20}{c}}
  1 \\
  2 \\
  2
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  1 \\
  2 \\
  1
\end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}}
  1 \\
  2 \\
  2
\end{array}} \right)\)     (M1)

\(x + 2y + 2z = 7\)     A1

Note: If attempt to solve by a system of equations:
Award A1 for 3 correct equations, A1 for eliminating a variable and A2 for the correct answer.

 

[4 marks]

b.

Examiners report

Most candidates attempted this question and scored at least a few marks in (a) and (b). Part (c) was more challenging to many candidates who were unsure how to find the required distance. Part (d) was attempted by many candidates some of whom benefited from follow through marks due to errors in previous parts. However, many candidates failed to give the correct answer to this question due to the use of the simplified vector found in (b) showing little understanding of the role of the magnitude of this vector. Part (e) was poorly answered. Overall, this question was not answered to the expected level, showing that many candidates have difficulties with vectors and are unable to answer even standard questions on this topic.

a.

Most candidates attempted this question and scored at least a few marks in (a) and (b). Part (c) was more challenging to many candidates who were unsure how to find the required distance. Part (d) was attempted by many candidates some of whom benefited from follow through marks due to errors in previous parts. However, many candidates failed to give the correct answer to this question due to the use of the simplified vector found in (b) showing little understanding of the role of the magnitude of this vector. Part (e) was poorly answered. Overall, this question was not answered to the expected level, showing that many candidates have difficulties with vectors and are unable to answer even standard questions on this topic.

b.

Question

Consider the points \({\text{A(1, 0, 0)}}\), \({\text{B(2, 2, 2)}}\) and \({\text{C(0, 2, 1)}}\).

A third plane \({\Pi _3}\) is defined by the Cartesian equation \(16x + \alpha y – 3z = \beta \).

a.Find the vector \(\overrightarrow {{\text{CA}}}  \times \overrightarrow {{\text{CB}}} \).[4]

 

b.Find an exact value for the area of the triangle ABC.[3]

 

c.Show that the Cartesian equation of the plane \({\Pi _1}\), containing the triangle ABC, is \(2x + 3y – 4z = 2\).[3]

 

d.A second plane \({\Pi _2}\) is defined by the Cartesian equation \({\Pi _2}:4x – y – z = 4\). \({L_1}\) is the line of intersection of the planes \({\Pi _1}\) and \({\Pi _2}\).

Find a vector equation for \({L_1}\).[5]

 

e.Find the value of \(\alpha \) if all three planes contain \({L_1}\).[3]

 

f.Find conditions on \(\alpha \) and \(\beta \) if the plane \({\Pi _3}\) does not intersect with \({L_1}\).[2]

 
▶️Answer/Explanation

Markscheme

\(\overrightarrow {{\rm{CA}}}  = \left( \begin{array}{c}1\\ – 2\\ – 1\end{array} \right)\)     (A1)

\(\overrightarrow {{\rm{CB}}}  = \left( \begin{array}{c}2\\0\\1\end{array} \right)\)     (A1)

Note:     If \(\overrightarrow {{\text{AC}}} \) and \(\overrightarrow {{\text{BC}}} \) found correctly award (A1) (A0).

\(\overrightarrow {{\rm{CA}}}  \times \overrightarrow {{\rm{CB}}}  = \left| {\begin{array}{*{20}{c}}i&j&k\\1&{ – 2}&{ – 1}\\2&0&1\end{array}} \right|\)     (M1)

\(\left( \begin{array}{c} – 2\\ – 3\\4\end{array} \right)\)     A1

[4 marks]

a.

METHOD 1

\(\frac{1}{2}\left| {\overrightarrow {{\text{CA}}}  \times \overrightarrow {{\text{CB}}} } \right|\)     (M1)

\( = \frac{1}{2}\sqrt {{{( – 2)}^2} + {{( – 3)}^2} + {4^2}} \)     (A1)

\( = \frac{{\sqrt {29} }}{2}\)     A1

METHOD 2

attempt to apply \(\frac{1}{2}\left| {{\text{CA}}} \right|\left| {{\text{CB}}} \right|\sin C\)     (M1)

\({\text{CA.CB}} = \sqrt 5 .\sqrt 6 \cos C \Rightarrow \cos C = \frac{1}{{\sqrt {30} }} \Rightarrow \sin C = \frac{{\sqrt {29} }}{{\sqrt {30} }}\)     (A1)

\({\text{area}} = \frac{{\sqrt {29} }}{2}\)     A1

[3 marks]

b.

METHOD 1

r.\(\left( \begin{array}{c} – 2\\ – 3\\4\end{array} \right) = \left( \begin{array}{l}1\\0\\0\end{array} \right) \bullet \left( \begin{array}{c} – 2\\ – 3\\4\end{array} \right)\)     M1A1

\( \Rightarrow  – 2x – 3y + 4z =  – 2\)     A1

\( \Rightarrow 2x + 3y – 4z = 2\)     AG

METHOD 2

\( – 2x – 3y + 4z = d\)

substituting a point in the plane     M1A1

\({\text{d}} =  – 2\)     A1

\( \Rightarrow  – 2x – 3y + 4z =  – 2\)

\( \Rightarrow 2x + 3y – 4z = 2\)     AG

Note:     Accept verification that all 3 vertices of the triangle lie on the given plane.

[3 marks]

c.

METHOD 1

\(\left| {\begin{array}{*{20}{c}}{\mathbf{i}}&{\mathbf{j}}&{\mathbf{k}}\\2&3&{ – 4}\\4&{ – 1}&{ – 1}\end{array}} \right| = \left( \begin{array}{c} – 7\\ – 14\\ – 14\end{array} \right)\)    M1A1

\({\mathbf{n}} = \left( \begin{array}{l}1\\2\\2\end{array} \right)\)

\(z = 0 \Rightarrow y = 0,{\text{ }}x = 1\)     (M1)(A1)

\({L_1}:{\mathbf{r}} = \left( \begin{array}{l}1\\0\\0\end{array} \right) + \lambda \left( \begin{array}{l}1\\2\\2\end{array} \right)\)     A1

Note:     Do not award the final A1 if \(\mathbf{r} =\) is not seen.

METHOD 2

eliminate 1 of the variables, eg x     M1

\( – 7y + 7z = 0\)     (A1)

introduce a parameter     M1

\( \Rightarrow z = \lambda \),

\(y = \lambda {\text{, }}x = 1 + \frac{\lambda }{2}\)     (A1)

\({\mathbf{r}} = \left( \begin{array}{l}1\\0\\0\end{array} \right) + \lambda \left( \begin{array}{l}1\\2\\2\end{array} \right)\) or equivalent     A1

Note:     Do not award the final A1 if \(\mathbf{r} =\) is not seen.

METHOD 3

\(z = t\)     M1

write x and y in terms of \(t \Rightarrow 4x – y = 4 + t,{\text{ }}2x + 3y = 2 + 4t\) or equivalent     A1

attempt to eliminate x or y     M1

\(x,{\text{ }}y,{\text{ }}z\) expressed in parameters

\( \Rightarrow z = t\),

\(y = t,{\text{ }}x = 1 + \frac{t}{2}\)     A1

\({\mathbf{r}} = \left( \begin{array}{l}1\\0\\0\end{array} \right) + t \left( \begin{array}{l}1\\2\\2\end{array} \right)\) or equivalent     A1

Note:     Do not award the final A1 if \(\mathbf{r} =\) is not seen.

[5 marks]

d.

METHOD 1

direction of the line is perpendicular to the normal of the plane

\(\left( \begin{array}{c}16\\\alpha \\ – 3\end{array} \right) \bullet \left( \begin{array}{l}1\\2\\2\end{array} \right) = 0\)     M1A1

\(16 + 2\alpha  – 6 = 0 \Rightarrow \alpha  =  – 5\)     A1

METHOD 2

solving line/plane simultaneously

\(16(1 + \lambda ) + 2\alpha \lambda  – 6\lambda  = \beta \)     M1A1

\(16 + (10 + 2\alpha )\lambda  = \beta \)

\( \Rightarrow \alpha  =  – 5\)     A1

METHOD 3

\(\left| {\begin{array}{*{20}{c}}2&3&{ – 4}\\4&{ – 1}&{ – 1}\\{16}&\alpha &{ – 3}\end{array}} \right| = 0\)     M1

\(2(3 + \alpha ) – 3( – 12 + 16) – 4(4\alpha  + 16) = 0\)     A1

\( \Rightarrow \alpha  =  – 5\)     A1

METHOD 4

attempt to use row reduction on augmented matrix     M1

to obtain \(\left( {\begin{array}{*{20}{c}}2&3&{ – 4}\\0&{ – 1}&1\\0&0&{\alpha  + 5}\end{array}\left| \begin{array}{c}2\\0\\\beta  – 16\end{array} \right.} \right)\)     A1

\( \Rightarrow \alpha  =  – 5\)     A1

[3 marks]

e.

\(\alpha  =  – 5\)     A1

\(\beta  \ne 16\)     A1

[2 marks]

f.
 

 

Question

The points A, B, C and D have position vectors a, b, c and d, relative to the origin O.

It is given that \(\mathop {{\text{AB}}}\limits^ \to   = \mathop {{\text{DC}}}\limits^ \to  \).

The position vectors \(\mathop {{\text{OA}}}\limits^ \to  \), \(\mathop {{\text{OB}}}\limits^ \to  \), \(\mathop {{\text{OC}}}\limits^ \to  \) and \(\mathop {{\text{OD}}}\limits^ \to  \) are given by

a = i + 2j − 3k

b = 3ij + pk

c = qi + j + 2k

d = −i + rj − 2k

where p , q and r are constants.

The point where the diagonals of ABCD intersect is denoted by M.

The plane \(\Pi \) cuts the x, y and z axes at X , Y and Z respectively.

a.i.Explain why ABCD is a parallelogram.[1]

a.ii.Using vector algebra, show that \(\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  \).[3]

b.Show that p = 1, q = 1 and r = 4.[5]

c.Find the area of the parallelogram ABCD.[4]

d.Find the vector equation of the straight line passing through M and normal to the plane \(\Pi \) containing ABCD.[4]

e.Find the Cartesian equation of \(\Pi \).[3

f.i.Find the coordinates of X, Y and Z.[2]

f.ii.Find YZ.[2]

 
▶️Answer/Explanation

Markscheme

a pair of opposite sides have equal length and are parallel      R1

hence ABCD is a parallelogram      AG

[1 mark]

a.i.

attempt to rewrite the given information in vector form       M1

ba = cd      A1

rearranging d − a = c − b       M1

hence  \(\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  \)     AG

Note: Candidates may correctly answer part i) by answering part ii) correctly and then deducing there
are two pairs of parallel sides.

[3 marks]

a.ii.

EITHER

use of \(\mathop {{\text{AB}}}\limits^ \to   = \mathop {{\text{DC}}}\limits^ \to  \)     (M1)

\(\left( \begin{gathered}
2 \hfill \\
– 3 \hfill \\
p + 3 \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
q + 1 \hfill \\
1 – r \hfill \\
4 \hfill \\
\end{gathered} \right)\)       A1A1

OR

use of \(\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  \)      (M1)

\(\left( \begin{gathered}
– 2 \hfill \\
r – 2 \hfill \\
1 \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
q – 3 \hfill \\
2 \hfill \\
2 – p \hfill \\
\end{gathered} \right)\)      A1A1

THEN

attempt to compare coefficients of i, j, and k in their equation or statement to that effect       M1

clear demonstration that the given values satisfy their equation       A1
p = 1, q = 1, r = 4       AG

[5 marks]

b.

attempt at computing \(\mathop {{\text{AB}}}\limits^ \to  \, \times \mathop {{\text{AD}}}\limits^ \to  \) (or equivalent)       M1

\(\left( \begin{gathered}
– 11 \hfill \\
– 10 \hfill \\
– 2 \hfill \\
\end{gathered} \right)\)     A1

area \( = \left| {\mathop {{\text{AB}}}\limits^ \to  \, \times \mathop {{\text{AD}}}\limits^ \to  } \right|\left( { = \sqrt {225} } \right)\)      (M1)

= 15       A1

[4 marks]

c.

valid attempt to find \(\mathop {{\text{OM}}}\limits^ \to   = \left( {\frac{1}{2}\left( {a + c} \right)} \right)\)      (M1)

\(\left( \begin{gathered}
1 \hfill \\
\frac{3}{2} \hfill \\
– \frac{1}{2} \hfill \\
\end{gathered} \right)\)     A1

the equation is

r = \(\left( \begin{gathered}
1 \hfill \\
\frac{3}{2} \hfill \\
– \frac{1}{2} \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
11 \hfill \\
10 \hfill \\
2 \hfill \\
\end{gathered} \right)\) or equivalent       M1A1

Note: Award maximum M1A0 if ‘r = …’ (or equivalent) is not seen.

[4 marks]

d.

attempt to obtain the equation of the plane in the form ax + by + cz = d       M1

11x + 10y + 2z = 25      A1A1

Note: A1 for right hand side, A1 for left hand side.

[3 marks]

e.

putting two coordinates equal to zero       (M1)

\({\text{X}}\left( {\frac{{25}}{{11}},\,0,\,0} \right),\,\,{\text{Y}}\left( {0,\,\frac{5}{2},\,0} \right),\,\,{\text{Z}}\left( {0,\,0,\,\frac{{25}}{2}} \right)\)      A1

[2 marks]

f.i.

\({\text{YZ}} = \sqrt {{{\left( {\frac{5}{2}} \right)}^2} + {{\left( {\frac{{25}}{2}} \right)}^2}} \)     M1

\( = \sqrt {\frac{{325}}{2}} \left( { = \frac{{5\sqrt {104} }}{4} = \frac{{5\sqrt {26} }}{2}} \right)\)     A1

[4 marks]

f.ii.

Examiners report

[N/A]

a.i.

[N/A]

a.ii.

[N/A]

b.

[N/A]

c.

[N/A]

d.

[N/A]

e.

[N/A]

f.i.

[N/A]

f.ii.

Question

The parallelogram \(ABCD\) has vertices \(A(3,2,0), B(7,-1,-1), C(10,-3,0)\) and \(D(6,0,1)\). Calculate the area of the parallelogram.

▶️Answer/Explanation

Ans:

\(A(3,2,0), B(7,-1,-1), C(10,-3,0), D(6,0,1)\)
Two bounding vectors are \(\overrightarrow{AB}= \begin{pmatrix} 7\\ -1\\ -1\end{pmatrix} – \begin{pmatrix} 3\\ 2\\ 0\end{pmatrix} = \begin{pmatrix} 4\\ -3\\ -1\end{pmatrix}\) and 
\(\overrightarrow{AD}= \begin{pmatrix} 6\\ 0\\ 1\end{pmatrix} – \begin{pmatrix} 3\\ 2\\ 0\end{pmatrix} = \begin{pmatrix} 3\\ -2 \\ 1\end{pmatrix}\)                        
Area of Parallelogram = \(\left | \begin{pmatrix} i & j & k\\ 4 & -3 & -1\\ 3 & -2 & 1 \end{pmatrix} \right |   \)     
\(=|(-3-2)i-(4+3)j-(-8+9)k|=\sqrt{(-5)^2+(-7)^2+(-1)^2}\)            
\(=\sqrt{75} (accept 5\sqrt{3} or 8.66)\)                                        

Question

Consider the points \(A(1, 2, –4), B(1, 5, 0)\) and \(C(6, 5, –12)\). Find the area of △\(ABC\).

▶️Answer/Explanation

Ans:

METHOD 1

\(\overrightarrow{BA}= \begin{pmatrix} 0\\ -3\\ -4\end{pmatrix}, \overrightarrow{BC}= \begin{pmatrix} 5\\ 0\\ -12\end{pmatrix}\)           
Note:
Award \((A1), (A1)\) for any two correct vectors used to find area.
\(\overrightarrow{BA} × \overrightarrow{BC} = \begin{pmatrix} i & j & k\\ 0 & -3 & -4\\ 5 & 0 & -12 \end{pmatrix}\)                
\(= 36i – 20j + 15k\)                                         
Area = \(\frac{1}{2}|\overrightarrow{BA} × \overrightarrow{BC}|=\frac{1}{2}\sqrt{(36)^2+(20)^2+(15)^2}\)
\(=\frac{1}{2}\sqrt{1921}\)                                     
\(= 21.9  \)                                             

METHOD 2
\(\overrightarrow{BA}= \begin{pmatrix} 0\\ -3\\ -4\end{pmatrix}, \overrightarrow{BC}= \begin{pmatrix} 5\\ 0\\ -12\end{pmatrix}\)           
\(|\overrightarrow{BA}|= 5\)      \(|\overrightarrow{BC}|= 13\)                                
Area = \(\frac{1}{2} × 5 × 13 sin \left (cos^{-1}\left (\frac{48}{65}\right ) \right ) = 21.9\)             

Question

Given that \(a=2i-j-k, b=2i+j-2k\) and \(c=-i+j-k\) are the position vectors of the points A, B and C respectively, calculate the area of triangle \(ABC\).

▶️Answer/Explanation

Ans:

METHOD 1
\(\overrightarrow{AB}=2j-k\) and \(\overrightarrow{AC}=-3i+2j\)                                     
\(\overrightarrow{AB} × \overrightarrow{AC}= \begin{pmatrix} i & j & k\\ 0 & 2 & -1\\ -3 & 2 & 0 \end{pmatrix}\)                                                 
\(=2i+3j+6k\)                                                                                  
Area △ \(ABC\) \(= \frac{1}{2}|\overrightarrow{AB} × \overrightarrow{AC}|\)                            
\(=\frac{7}{2}\)                                                                                                       

METHOD 2
\(\overrightarrow{AB}=2j-k\) and \(\overrightarrow{AC}=-3i+2j\)                                      
Attempting to use the scalar product to find \(\theta \) i.e \(\overrightarrow{AB}.\overrightarrow{AC}=|\overrightarrow{AB}||\overrightarrow{AC}| cos \theta\)                            
\(cos \theta = \frac{4}{\sqrt{65}}\left ( \theta = arc cos\frac{4}{\sqrt{65}}=arcsin \frac{7}{\sqrt{65}}=60.255…\right )\)                                 
Area △ \(ABC\) \(=\frac{1}{2}|\overrightarrow{AB}| |\overrightarrow{AC}| sin \theta \left ( =\frac{1}{2} ×\sqrt{5}×\sqrt{13}×\frac{7}{\sqrt{65}} \right )\)                                           
\(=\frac{7}{2}\)     

Question

Given any two non-zero vectors \(a\) and \(b\), show that \(│a × b│ ^2 = │a│ ^2│b│ ^2 – (a • b) ^2\).

▶️Answer/Explanation

Ans:

METHOD 1
Use of \(| a × b | = | a | | b | sin \theta \)                                                                     
\(| a × b | ^2 = | a |^2 | b |^2 sin^2 \theta\)                                                            
Note: Only one of the first two marks can be implied.
\(= | a |^2 | b |^2 (1 − cos^2 \theta)\)                                                                           
\(= | a |^2 | b |^2 − | a |^2 | b |^2 cos^2 \theta\)                                                    
\(= | a |^2 | b |^2 − (| a | | b | cosθ)^ 2\)                                                                     
Note: Only one of the above two A1 marks can be implied.
\(= | a |^2 | b |^2 − (a • b)^ 2 \)                                                                                       
Hence LHS = RHS                                                                                                             
METHOD 2
Use of \(a • b = | a | | b | cos \theta \)                                                                               
\(| a |^2 | b |^2 − (a • b)^ 2 = | a |^2 | b |^2 − (| a | | b | cos\theta)^ 2\)             
\(= | a |^2 | b |^2 − | a |^2 | b |^2 cos^2 \theta\)                                                          
Note: Only one of the above two A1 marks can be implied.
\(= | a |^2 | b |^2 (1 − cos^2 \theta) \)                                                                             
\(= | a |^2 | b |^2 sin^2 \theta= | a × b |^2\)                                                                  
Hence LHS = RHS   

Scroll to Top