IB DP Math AA Topic : AHL 3.17: Use of normal vector to obtain the form r⋅n=a⋅n HL Paper 2

Question

The points P(−1, 2, − 3), Q(−2, 1, 0), R(0, 5, 1) and S form a parallelogram, where S is diagonally opposite Q.

a.Find the coordinates of S.[2]

 

b.The vector product \(\overrightarrow {{\text{PQ}}}  \times \overrightarrow {{\text{PS}}} = \left( {\begin{array}{*{20}{c}}
  { – 13} \\
  7 \\
  m
\end{array}} \right)\). Find the value of m .
[2]

 

c.Hence calculate the area of parallelogram PQRS.[2]

 

d.Find the Cartesian equation of the plane, \({\prod _1}\) , containing the parallelogram PQRS.[3]

 

e.Write down the vector equation of the line through the origin (0, 0, 0) that is perpendicular to the plane \({\prod _1}\) .[1]

 

f.Hence find the point on the plane that is closest to the origin.[3]

 

g.A second plane, \({\prod _2}\) , has equation x − 2y + z = 3. Calculate the angle between the two planes.[4]

 
▶️Answer/Explanation

Markscheme

\(\overrightarrow {{\text{PQ}}}  = \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  { – 1} \\
  3
\end{array}} \right)\) , \(\overrightarrow {{\text{SR}}}  = \left( {\begin{array}{*{20}{c}}
  {0 – x} \\
  {5 – y} \\
  {1 – z}
\end{array}} \right)\)     (M1)

point S = (1, 6, −2)     A1

[2 marks]

a.

\(\overrightarrow {{\text{PQ}}} = \left( {\begin{array}{*{20}{c}}
  { – 1} \\
  { – 1} \\
  3
\end{array}} \right)\)\(\overrightarrow {{\text{PS}}} = \left( {\begin{array}{*{20}{c}}
  2 \\
  4 \\
  1
\end{array}} \right)\)     A1

\(\overrightarrow {{\text{PQ}}}  \times \overrightarrow {{\text{PS}}} = \left( {\begin{array}{*{20}{c}}
  { – 13} \\
  7 \\
  { – 2}
\end{array}} \right)\)

m = −2     A1

[2 marks]

b.

area of parallelogram PQRS \( = \left| {\overrightarrow {{\text{PQ}}}  \times \overrightarrow {{\text{PS}}} } \right| = \sqrt {{{( – 13)}^2} + {7^2} + {{( – 2)}^2}} \)     M1

\( = \sqrt {222}  = 14.9\)     A1

[2 marks]

c.

equation of plane is −13x + 7y − 2z = d     M1A1

substituting any of the points given gives d = 33

−13x + 7y − 2z = 33     A1

[3 marks]

d.

equation of line is \(\boldsymbol{r} = \left( {\begin{array}{*{20}{c}}
  0 \\
  0 \\
  0
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}
  { – 13} \\
  7 \\
  { – 2}
\end{array}} \right)\)     A1

Note: To get the A1 must have \(\boldsymbol{r} =\) or equivalent.

 

[1 mark]

e.

\(169\lambda + 49\lambda + 4\lambda = 33\)     M1

\(\lambda = \frac{{33}}{{222}}{\text{ }}( = 0.149…)\)     A1

closest point is \(\left( { – \frac{{143}}{{74}},\frac{{77}}{{74}}, – \frac{{11}}{{37}}} \right){\text{ }}\left( { = ( – 1.93,{\text{ 1.04,  – 0.297)}}} \right)\)     A1

[3 marks]

f.

angle between planes is the same as the angle between the normals     (R1)

\(\cos \theta = \frac{{ – 13 \times 1 + 7 \times – 2 – 2 \times 1}}{{\sqrt {222} \times \sqrt 6 }}\)     M1A1

\(\theta = 143^\circ \) (accept \(\theta = 37.4^\circ \) or 2.49 radians or 0.652 radians)     A1

[4 marks]

g.
 

Question

The points A and B have coordinates (1, 2, 3) and (3, 1, 2) relative to an origin O.

(i)     Find \(\overrightarrow {{\text{OA}}}  \times \overrightarrow {{\text{OB}}} \) .

(ii)     Determine the area of the triangle OAB.

(iii)     Find the Cartesian equation of the plane OAB.

[5]
a.

(i)     Find the vector equation of the line \({L_1}\) containing the points A and B.

(ii)     The line \({L_2}\) has vector equation \(\left( {\begin{array}{*{20}{c}}
  x \\
  y \\
  z
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
  2 \\
  4 \\
  3
\end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}
  1 \\
  3 \\
  2
\end{array}} \right)\).

Determine whether or not \({L_1}\) and \({L_2}\) are skew.

[7]
b.
▶️Answer/Explanation

Markscheme

(i)     \(\overrightarrow {{\text{OA}}} \times \overrightarrow {{\text{OB}}} = \) i + 7j – 5k     A1

 

(ii)     area \( = \frac{1}{2}|\)i + 7j – 5k\(| = \frac{{5\sqrt 3 }}{2}{\text{(4.33)}}\)     M1A1

 

(iii)     equation of plane is \(x + 7y – 5z = k\)     M1

\(x + 7y – 5z = 0\)     A1

[5 marks]

a.

(i)     direction of line = (3i + j + 2k) – (i + 2j + 3k) = 2ijk     M1A1

equation of line is

r = (i + 2j + 3k) + \(\lambda \)(2ijk)     A1

 

(ii)     at a point of intersection,

\(1 + 2\lambda = 2 + \mu \)

\(2 – \lambda = 4 + 3\mu \)     M1A1

\(3 – \lambda = 3 + 2\mu \)

solving the \({2^{{\text{nd}}}}\) and \({3^{{\text{rd}}}}\) equations, \(\lambda = 4{\text{, }}\mu = – 2\)     A1

these values do not satisfy the \({1^{{\text{st}}}}\) equation so the lines are skew     R1 

[7 marks]

b.
Scroll to Top