IB DP Maths Topic 5.2 Dispersion: range, interquartile range, variance, standard deviation SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The following is a cumulative frequency diagram for the time t, in minutes, taken by 80 students to complete a task.


Write down the median.

[1]
a.

Find the interquartile range.

[3]
b.

Complete the frequency table below.

[2]
c.
Answer/Explanation

Markscheme

median \(m = 32\)     A1     N1

[1 mark]

a.

lower quartile \({Q_1} = 22\) , upper quartile \({Q_3} = 40\)     (A1)(A1)

\({\text{interquartile range}} = 18\)     A1      N3

[3 marks]

b.

     A1A1     N2

[2 marks]

c.

Question

A fisherman catches 200 fish to sell. He measures the lengths, l cm of these fish, and the results are shown in the frequency table below.


Calculate an estimate for the standard deviation of the lengths of the fish.

[3]
a.

A cumulative frequency diagram is given below for the lengths of the fish.


Use the graph to answer the following.

(i)     Estimate the interquartile range.

(ii)    Given that \(40\% \) of the fish have a length more than \(k{\text{ cm}}\), find the value of k.

[6]
b.

In order to sell the fish, the fisherman classifies them as small, medium or large.

Small fish have a length less than \(20{\text{ cm}}\).

Medium fish have a length greater than or equal to \(20{\text{ cm}}\) but less than \(60{\text{ cm}}\).

Large fish have a length greater than or equal to \(60{\text{ cm}}\).

Write down the probability that a fish is small.

[2]
c.

The cost of a small fish is \(\$ 4\), a medium fish \(\$ 10\), and a large fish \(\$ 12\).

Copy and complete the following table, which gives a probability distribution for the cost \(\$ X\) .


[2]
d.

Find \({\text{E}}(X)\) .

[2]
e.
Answer/Explanation

Markscheme

evidence of using mid-interval values (5, 15, 25, 35, 50, 67.5, 87.5)     (M1) 

\(\sigma  = 19.8\) (cm)     A2     N3

[3 marks]

a.

(i) \({Q_1} = 15\) , \({Q_3} = 40\)     (A1)(A1)

\(IQR = 25\) (accept any notation that suggests the interval 15 to 40)     A1     N3

(ii) METHOD 1

\(60\% \) have a length less than k     (A1)

\(0.6 \times 200 = 120\)     (A1)

\(k = 30\) (cm)     A1     N2

METHOD 2

\(0.4 \times 200 = 80\)     (A1)

\(200 – 80 = 120\)     (A1)

\(k = 30\) (cm)     A1     N2

[6 marks]

b.

\(l < 20{\text{ cm}} \Rightarrow 70{\text{ fish}}\)     (M1)

\({\rm{P(small)}} = \frac{{70}}{{200}}( = 0.35)\)     A1     N2

[2 marks]

c.


     A1A1     N2

[2 marks]

d.

correct substitution (of their p values) into formula for \({\text{E}}(X)\)     (A1)

e.g. \(4 \times 0.35 + 10 \times 0.565 + 12 \times 0.085\)

\({\text{E}}(X) = 8.07\) (accept \(\$ 8.07\))      A1     N2

[2 marks]

e.

Question

The following frequency distribution of marks has mean 4.5.


Find the value of x.

[4]
a.

Write down the standard deviation.

[2]
b.
Answer/Explanation

Markscheme

\(\sum {fx = 1(2) + 2(4) +  \ldots  + 7(4)} \) , \(\sum {fx = 146 + 5x} \) (seen anywhere)     A1 

evidence of substituting into mean \(\frac{{\sum {fx} }}{{\sum f }}\)     (M1)

correct equation     A1

e.g. \(\frac{{146 + 5x}}{{34 + x}} = 4.5\) , \(146 + 5x = 4.5(34 + x)\)

\(x = 14\)     A1     N2 

[4 marks]

a.

\(\sigma = 1.54\)     A2     N2

[2 marks]

b.

Question

The following table gives the examination grades for 120 students.


Find the value of

(i)     p ;

(ii)    q .

[4]
a(i) and (ii).

Find the mean grade.

[2]
b.

Write down the standard deviation.

[1]
c.
Answer/Explanation

Markscheme

(a) (i) evidence of appropriate approach     (M1)

e.g. \(9 + 25 + 35\) , \(34 + 35\)

\(p = 69\)     A1     N2

(ii) evidence of valid approach     (M1)

e.g. \(109 – \) their value of p, \(120 – (9 + 25 + 35 + 11)\)

\(q = 40\)     A1     N2

[4 marks]

a(i) and (ii).

evidence of appropriate approach     (M1)

e.g. substituting into \(\frac{{\sum {fx} }}{n}\), division by 120

mean \(= 3.16\)     A1     N2

[2 marks]

b.

1.09     A1     N1

[1 mark]

c.

Question

A standard die is rolled 36 times. The results are shown in the following table.


Write down the standard deviation.

[2]
a.

Write down the median score.

[1]
b.

Find the interquartile range.

[3]
c.
Answer/Explanation

Markscheme

\(\sigma  = 1.61\)     A2     N2

[2 marks]

a.

median \( = 4.5\)     A1     N1

[1 mark]

b.

\({Q_1} = 3\) , \({Q_3} = 5\) (may be seen in a box plot)     (A1)(A1)

\({\text{IQR}} = 2\) (accept any notation that suggests the interval 3 to 5)     A1     N3

[3 marks]

c.

Question

Consider the following cumulative frequency table.


Find the value of \(p\) .

[2]
a.

Find

  (i)     the mean;

  (ii)     the variance.

[4]
b.
Answer/Explanation

Markscheme

valid approach     (M1)

eg   \(35 – 26\) , \(26 + p = 36\)

\(p = 9\)     A1     N2

[2 marks]

a.

(i)     mean \( = 26.7\)     A2     N2

(ii)     recognizing that variance is (sd)2     (M1)

eg   \(11.021{ \ldots ^2}\) , \(\sigma  = \sqrt {{\mathop{\rm var}} } \) , \(11.158{ \ldots ^2}\)

\({\sigma ^2} = 121\)     A1     N2

[4 marks]

b.

Question

A random variable \(X\) is normally distributed with \(\mu  = 150\) and \(\sigma  = 10\) .

Find the interquartile range of \(X\) .

Answer/Explanation

Markscheme

recognizing one quartile probability (may be seen in a sketch)     (M1)

eg   \({\rm{P}}(X < {Q_3}) = 0.75\) , \(0.25\)

finding standardized value for either quartile     (A1)

eg   \(z = 0.67448 \ldots \) , \(z = – 0.67448 \ldots \)

attempt to set up equation (must be with \(z\)-values)     (M1)

eg   \(0.67 = \frac{{{Q_3} – 150}}{{10}}\) , \( – 0.67448 = \frac{{x – 150}}{{10}}\)

one correct quartile

eg   \({Q_3} = 156.74 \ldots \) , \({Q_1} = 143.25 \ldots \)

correct working     (A1)

eg   other correct quartile, \({Q_3} – \mu  = 6.744 \ldots \)

valid approach for IQR (seen anywhere)     (A1)

eg   \({Q_3} – {Q_1}\) , \(2({Q_3} – \mu )\)

IQR \( = 13.5\)     A1     N4

[7 marks]

Question

Let \(f(x) = {{\text{e}}^{0.5x}} – 2\).

For the graph of f:

(i)     write down the \(y\)-intercept;

(ii)     find the \(x\)-intercept;

(iii)     write down the equation of the horizontal asymptote.

[4]
a.

On the following grid, sketch the graph of \(f\), for \( – 4 \leqslant x \leqslant 4\).

M16/5/MATME/SP2/ENG/TZ2/03.b

[3]
b.
Answer/Explanation

Markscheme

(i)     \(y =  – 1\)     A1     N1

(ii)     valid attempt to find \(x\)-intercept     (M1)

eg\(\,\,\,\,\,\)\(f(x) = 0\)

1.38629     A1     N2

\(x = 2\ln 2{\text{ (exact), }}1.39\)

(iii)     \(y =  – 2\) (must be equation)     A1     N1

a.

M16/5/MATME/SP2/ENG/TZ2/03.b/M     A1A1A1     N3

[3 marks]

b.

Question

Ten students were surveyed about the number of hours, \(x\), they spent browsing the Internet during week 1 of the school year. The results of the survey are given below.

\[\sum\limits_{i = 1}^{10} {{x_i} = 252,{\text{ }}\sigma  = 5{\text{ and median}} = 27.} \]

During week 4, the survey was extended to all 200 students in the school. The results are shown in the cumulative frequency graph:

N16/5/MATME/SP2/ENG/TZ0/08.d

Find the mean number of hours spent browsing the Internet.

[2]
a.

During week 2, the students worked on a major project and they each spent an additional five hours browsing the Internet. For week 2, write down

(i)     the mean;

(ii)     the standard deviation.

[2]
b.

During week 3 each student spent 5% less time browsing the Internet than during week 1. For week 3, find

(i)     the median;

(ii)     the variance.

[6]
c.

(i)     Find the number of students who spent between 25 and 30 hours browsing the Internet.

(ii)     Given that 10% of the students spent more than k hours browsing the Internet, find the maximum value of \(k\).

[6]
d.
Answer/Explanation

Markscheme

attempt to substitute into formula for mean     (M1)

eg\(\,\,\,\,\,\)\(\frac{{\Sigma x}}{{10}},{\text{ }}\frac{{252}}{n},{\text{ }}\frac{{252}}{{10}}\)

mean \( = 25.2{\text{ (hours)}}\)     A1     N2

[2 marks]

a.

(i)     mean \( = 30.2{\text{ (hours)}}\)     A1 N1

(ii)     \(\sigma  = 5{\text{ (hours)}}\)     A1     N1

[2 marks]

b.

(i)     valid approach     (M1)

eg\(\,\,\,\,\,\)95%, 5% of 27

correct working     (A1)

eg\(\,\,\,\,\,\)\(0.95 \times 27,{\text{ }}27 – (5\% {\text{ of }}27)\)

median \( = 25.65{\text{ (exact), }}25.7{\text{ (hours)}}\)     A1     N2

(ii)     METHOD 1

variance \( = {({\text{standard deviation}})^2}\) (seen anywhere)     (A1)

valid attempt to find new standard deviation     (M1)

eg\(\,\,\,\,\,\)\({\sigma _{new}} = 0.95 \times 5,{\text{ }}4.75\)

variance \( = 22.5625{\text{ }}({\text{exact}}),{\text{ }}22.6\)     A1     N2

METHOD 2

variance \( = {({\text{standard deviation}})^2}\) (seen anywhere)     (A1)

valid attempt to find new variance     (M1)

eg\(\,\,\,\,\,\)\({0.95^2}{\text{ }},{\text{ }}0.9025 \times {\sigma ^2}\)

new variance \( = 22.5625{\text{ }}({\text{exact}}),{\text{ }}22.6\)     A1     N2

[6 marks]

c.

(i)     both correct frequencies     (A1)

eg\(\,\,\,\,\,\)80, 150

subtracting their frequencies in either order     (M1)

eg\(\,\,\,\,\,\)\(150 – 80,{\text{ }}80 – 150\)

70 (students)     A1     N2

(ii)     evidence of a valid approach     (M1)

eg\(\,\,\,\,\,\)10% of 200, 90%

correct working     (A1)

eg\(\,\,\,\,\,\)\(0.90 \times 200,{\text{ }}200 – 20\), 180 students

\(k = 35\)     A1     N3

[6 marks]

d.
Scroll to Top