IB DP Maths Topic 5.6 Probabilities with and without replacement SL Paper 1

Question

There are 20 students in a classroom. Each student plays only one sport. The table below gives their sport and gender.

One student is selected at random.

(i)     Calculate the probability that the student is a male or is a tennis player.

(ii)    Given that the student selected is female, calculate the probability that the student does not play football.

[4]
a(i) and (ii).

Two students are selected at random. Calculate the probability that neither student plays football.

[3]
b.
Answer/Explanation

Markscheme

(i) correct calculation     (A1)

e.g. \(\frac{9}{{20}} + \frac{5}{{20}} – \frac{2}{{20}}\) , \(\frac{{4 + 2 + 3 + 3}}{{20}}\)

\({\text{P(male or tennis)}} = \frac{{12}}{{20}}\)     A1     N2

(ii) correct calculation     (A1)

e.g. \(\frac{6}{{20}} \div \frac{{11}}{{20}}\) , \(\frac{{3 + 3}}{{11}}\)

\({\text{P(not football|female)}} = \frac{6}{{11}}\)     A1     N2

[4 marks]

a(i) and (ii).

\({\text{P(first not football)}} = \frac{{11}}{{20}}\) , \({\text{P(second not football)}} = \frac{{10}}{{19}}\)     A1

\({\text{P(neither football)}} = \frac{{11}}{{20}} \times \frac{{10}}{{19}}\)     A1

\({\text{P(neither football)}} = \frac{{110}}{{380}}\)     A1     N1

[3 marks]

b.

Question

The letters of the word PROBABILITY are written on 11 cards as shown below.


Two cards are drawn at random without replacement.

Let A be the event the first card drawn is the letter A.

Let B be the event the second card drawn is the letter B.

Find \({\rm{P}}(A)\) .

[1]
a.

Find \({\rm{P}}(B|A)\) .

[2]
b.

Find \({\rm{P}}(A \cap B)\) .

[3]
c.
Answer/Explanation

Markscheme

\({\rm{P}}(A) = \frac{1}{{11}}\)     A1    N1

[1 mark]

a.

\({\rm{P}}(B|A) = \frac{2}{{10}}\)     A2     N2

[2 marks]

b.

recognising that \({\rm{P}}(A \cap B) = {\rm{P}}(A) \times {\rm{P}}(B|A)\)     (M1) 

correct values     (A1)

e.g. \({\rm{P}}(A \cap B) = \frac{1}{{11}} \times \frac{2}{{10}}\)

\({\rm{P}}(A \cap B) = \frac{2}{{110}}\)     A1     N3 

[3 marks]

c.

Question

A box contains six red marbles and two blue marbles. Anna selects a marble from the box. She replaces the marble and then selects a second marble.

Write down the probability that the first marble Anna selects is red.

[1]
a.

Find the probability that Anna selects two red marbles.

[2]
b.

Find the probability that one marble is red and one marble is blue.

[3]
c.
Answer/Explanation

Markscheme

Note: In this question, method marks may be awarded for selecting without replacement, as noted in the examples.

\({\rm{P}}(R) = \frac{6}{8}\left( { = \frac{3}{4}} \right)\)     A1     N1

[1 mark]

a.

attempt to find \({\rm{P(Red)}} \times {\rm{P(Red)}}\)     (M1)

e.g. \({\rm{P(}}R{\rm{)}} \times {\rm{P(}}R{\rm{)}}\) , \(\frac{3}{4} \times \frac{3}{4}\) , \(\frac{6}{8} \times \frac{5}{7}\)

\({\rm{P}}(2R) = \frac{{36}}{{64}}\left( { = \frac{9}{{16}}} \right)\)     A1     N2

[2 marks]

b.

METHOD 1

attempt to find \({\rm{P(Red)}} \times {\rm{P(Blue)}}\)     (M1)

e.g. \({\rm{P(}}R{\rm{)}} \times {\rm{P(}}B{\rm{)}}\) , \(\frac{6}{8} \times \frac{2}{8}\) , \(\frac{6}{8} \times \frac{2}{7}\)

recognizing two ways to get one red, one blue     (M1)

e.g. \({\rm{P}}(RB) + {\rm{P}}(BR)\) , \(2\left( {\frac{{12}}{{64}}} \right)\) , \(\frac{6}{8} \times \frac{2}{7} + \frac{2}{8} \times \frac{6}{7}\)

\({\rm{P}}(1R,1B) = \frac{{24}}{{64}}\left( { = \frac{3}{8}} \right)\)     A1     N2

[3 marks]

METHOD 2

recognizing that \({\rm{P}}(1R,1B)\) is \(1 – {\rm{P}}(2B) – {\rm{P}}(2R)\)     (M1)

attempt to find \({\rm{P}}(2R)\) and \({\rm{P}}(2B)\)     (M1)

e.g. \({\rm{P}}(2R) = \frac{3}{4} \times \frac{3}{4}\) , \(\frac{6}{8} \times \frac{5}{7}\) ; \({\rm{P}}(2B) = \frac{1}{4} \times \frac{1}{4}\) , \(\frac{2}{8} \times \frac{1}{7}\)

\({\rm{P}}(1R,1B) = \frac{{24}}{{64}}\left( { = \frac{3}{8}} \right)\)     A1     N2

[3 marks]

c.

Question

Jar A contains three red marbles and five green marbles. Two marbles are drawn from the jar, one after the other, without replacement.

Jar B contains six red marbles and two green marbles. A fair six-sided die is tossed. If the score is \(1\) or \(2\), a marble is drawn from jar A. Otherwise, a marble is drawn from jar B.

Find the probability that

  (i)     none of the marbles are green;

  (ii)     exactly one marble is green.

[5]
a.

Find the expected number of green marbles drawn from the jar.

[3]
b.

(i)     Write down the probability that the marble is drawn from jar B.

(ii)     Given that the marble was drawn from jar B, write down the probability that it is red.

[2]
c.

Given that the marble is red, find the probability that it was drawn from jar A.

[6]
d.
Answer/Explanation

Markscheme

(i)     attempt to find \({\rm{P(red)}} \times {\rm{P(red)}}\)     (M1)

eg   \(\frac{3}{8} \times \frac{2}{7}\) , \(\frac{3}{8} \times \frac{3}{8}\) , \(\frac{3}{8} \times \frac{2}{8}\)

\({\text{P(none green)}} = \frac{6}{{56}}\) \(\left( { = \frac{3}{{28}}} \right)\)     A1     N2

(ii)     attempt to find \({\rm{P(red)}} \times {\rm{P(green)}}\)     (M1)

eg   \(\frac{5}{8} \times \frac{3}{7}\) , \(\frac{3}{8} \times \frac{5}{8}\) , \(\frac{{15}}{{56}}\)

recognizing two ways to get one red, one green     (M1)

eg   \(2{\rm{P}}(R) \times {\rm{P}}(G)\) , \(\frac{5}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{5}{7}\) , \(\frac{3}{8} \times \frac{5}{8} \times 2\)

\({\text{P(exactly one green)}} = \frac{{30}}{{56}}\) \(\left( { = \frac{{15}}{{28}}} \right)\)     A1     N2  

[5 marks]

a.

\({\text{P(both green)}} = \frac{{20}}{{56}}\) (seen anywhere)     (A1)

correct substitution into formula for \({\rm{E}}(X)\)     A1

eg   \(0 \times \frac{6}{{56}} + 1 \times \frac{{30}}{{56}} + 2 \times \frac{{20}}{{56}}\) , \(\frac{{30}}{{64}} + \frac{{50}}{{64}}\)

expected number of green marbles is \(\frac{{70}}{{56}}\) \(\left( { = \frac{5}{4}} \right)\)     A1     N2

[3 marks]

b.

(i)     \({\text{P(jar B)}} = \frac{4}{6}\) \(\left( { = \frac{2}{3}} \right)\)     A1     N1

(ii)     \({\text{P(red| jar B)}} = \frac{6}{8}\) \(\left( { = \frac{3}{4}} \right)\)     A1     N1

[2 marks]

c.

recognizing conditional probability     (M1)

eg   \({\rm{P}}(A|R)\) , \(\frac{{{\text{P(jar A and red)}}}}{{{\rm{P(red)}}}}\) , tree diagram

attempt to multiply along either branch (may be seen on diagram)     (M1)

eg   \({\text{P(jar A and red)}} = \frac{1}{3} \times \frac{3}{8}\) \(\left( { = \frac{1}{8}} \right)\)

attempt to multiply along other branch     (M1)

eg   \({\text{P(jar B and red)}} = \frac{2}{3} \times \frac{6}{8}\) \(\left( { = \frac{1}{2}} \right)\)

adding the probabilities of two mutually exclusive paths     (A1)

eg   \({\rm{P(red)}} = \frac{1}{3} \times \frac{3}{8} + \frac{2}{3} \times \frac{6}{8}\)

correct substitution

eg   \({\text{P(jar A|red)}} = \frac{{\frac{1}{3} \times \frac{3}{8}}}{{\frac{1}{3} \times \frac{3}{8} + \frac{2}{3} \times \frac{6}{8}}}\) , \(\frac{{\frac{1}{8}}}{{\frac{5}{8}}}\)     A1

\({\text{P(jar A|red)}} = \frac{1}{5}\)     A1     N3

[6 marks]

d.

Question

In a class of 21 students, 12 own a laptop, 10 own a tablet, and 3 own neither.

The following Venn diagram shows the events “own a laptop” and “own a tablet”.

The values \(p\), \(q\), \(r\) and \(s\) represent numbers of students.

M16/5/MATME/SP1/ENG/TZ2/08

A student is selected at random from the class.

Two students are randomly selected from the class. Let \(L\) be the event a “student owns a laptop”.

(i)     Write down the value of \(p\).

(ii)     Find the value of \(q\).

(iii)     Write down the value of \(r\) and of \(s\).

[5]
a.

(i)     Write down the probability that this student owns a laptop.

(ii)     Find the probability that this student owns a laptop or a tablet but not both.

[4]
b.

(i)     Copy and complete the following tree diagram. (Do not write on this page.)

M16/5/MATME/SP1/ENG/TZ2/08.c

(ii)     Write down the probability that the second student owns a laptop given that the first owns a laptop.

[4]
c.
Answer/Explanation

Markscheme

(i)     \(p = 3\)     A1     N1

(ii)     valid approach     (M1)

eg\(\,\,\,\,\,\)\((12 + 10 + 3) – 21,{\text{ }}22 – 18\)

\(q = 4\)    A1     N2

(iii)     \(r = 8,{\text{ }}s = 6\)     A1A1     N2

a.

(i)     \(\frac{{12}}{{21}}{\text{ }}\left( { = \frac{4}{7}} \right)\)     A2     N2

(ii)     valid approach     (M1)

eg\(\,\,\,\,\,\)\(8 + 6,{\text{ }}r + s\)

\(\frac{{14}}{{21}}{\text{ }}\left( { = \frac{2}{3}} \right)\)    A1     N2

b.

(i)     M16/5/MATME/SP1/ENG/TZ2/08.c/M     A1A1A1     N3

(ii)     \(\frac{{11}}{{20}}\)     A1     N1

[4 marks]

c.

Question

In a group of 20 girls, 13 take history and 8 take economics. Three girls take both history and economics, as shown in the following Venn diagram. The values \(p\) and \(q\) represent numbers of girls.

M17/5/MATME/SP1/ENG/TZ1/01

Find the value of \(p\);

[2]
a.i.

Find the value of \(q\).

[2]
a.ii.

A girl is selected at random. Find the probability that she takes economics but not history.

[2]
b.
Answer/Explanation

Markscheme

valid approach     (M1)

eg\(\,\,\,\,\,\)\(p + 3 = 13,{\text{ }}13 – 3\)

\(p = 10\)     A1     N2

[2 marks]

a.i.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(p + 3 + 5 + q = 20,{\text{ }}10 – 10 – 8\)

\(q = 2\)     A1     N2

[2 marks]

a.ii.

valid approach     (M1)

eg\(\,\,\,\,\,\)\(20 – p – q – 3,{\text{ }}1 – \frac{{15}}{{20}},{\text{ }}n(E \cap H’) = 5\)

\(\frac{5}{{20}}\,\,\,\left( {\frac{1}{4}} \right)\)     A1     N2

[2 marks]

b.

Question

Pablo drives to work. The probability that he leaves home before 07:00 is \(\frac{3}{4}\).

If he leaves home before 07:00 the probability he will be late for work is \(\frac{1}{8}\).

If he leaves home at 07:00 or later the probability he will be late for work is \(\frac{5}{8}\).

Copy and complete the following tree diagram.

[3]
a.

Find the probability that Pablo leaves home before 07:00 and is late for work.

[2]
b.

Find the probability that Pablo is late for work.

[3]
c.

Given that Pablo is late for work, find the probability that he left home before 07:00.

[3]
d.

Two days next week Pablo will drive to work. Find the probability that he will be late at least once.

[3]
e.
Answer/Explanation

Markscheme

A1A1A1 N3

Note: Award A1 for each bold fraction.

[3 marks]

a.

multiplying along correct branches      (A1)
eg  \(\frac{3}{4} \times \frac{1}{8}\)

P(leaves before 07:00 ∩ late) = \(\frac{3}{32}\)    A1 N2

[2 marks]

b.

multiplying along other “late” branch      (M1)
eg  \(\frac{1}{4} \times \frac{5}{8}\)

adding probabilities of two mutually exclusive late paths      (A1)
eg  \(\left( {\frac{3}{4} \times \frac{1}{8}} \right) + \left( {\frac{1}{4} \times \frac{5}{8}} \right),\,\,\frac{3}{{32}} + \frac{5}{{32}}\)

\({\text{P}}\left( L \right) = \frac{8}{{32}}\,\,\left( { = \frac{1}{4}} \right)\)    A1 N2

[3 marks]

c.

recognizing conditional probability (seen anywhere)      (M1)
eg  \({\text{P}}\left( {A|B} \right),\,\,{\text{P}}\left( {{\text{before 7}}|{\text{late}}} \right)\)

correct substitution of their values into formula      (A1)
eg \(\frac{{\frac{3}{{32}}}}{{\frac{1}{4}}}\)

\({\text{P}}\left( {{\text{left before 07:00}}|{\text{late}}} \right) = \frac{3}{8}\)    A1 N2

[3 marks]

d.

valid approach      (M1)
eg  1 − P(not late twice), P(late once) + P(late twice)

correct working      (A1)
eg  \(1 – \left( {\frac{3}{4} \times \frac{3}{4}} \right),\,\,2 \times \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{4}\)

\(\frac{7}{{16}}\)    A1 N2

[3 marks]

e.
Scroll to Top