IB DP Maths Topic 6.2 Derivative of xn(n∈Q) , sinx , cosx , tanx , ex and lnx SL Paper 2

 

https://play.google.com/store/apps/details?id=com.iitianDownload IITian Academy  App for accessing Online Mock Tests and More..

Question

The following diagram shows the graphs of \(f(x) = \ln (3x – 2) + 1\) and \(g(x) = – 4\cos (0.5x) + 2\) , for \(1 \le x \le 10\) .


Let A be the area of the region enclosed by the curves of f and g.

(i)     Find an expression for A.

(ii)    Calculate the value of A.

[6]
a(i) and (ii).

(i)     Find \(f'(x)\) .

(ii)    Find \(g'(x)\) .

[4]
b(i) and (ii).

There are two values of x for which the gradient of f is equal to the gradient of g. Find both these values of x.

[4]
c.
Answer/Explanation

Markscheme

(i) intersection points \(x = 3.77\) , \(x = 8.30\) (may be seen as the limits)     (A1)(A1)

approach involving subtraction and integrals     (M1)

fully correct expression     A2

e.g. \(\int_{3.77}^{8.30} {(( – 4\cos (0.5x) + 2) – (\ln (3x – 2) + 1)){\rm{d}}x} \) , \(\int_{3.77}^{8.30} {g(x){\rm{d}}x – } \int_{3.77}^{8.30} {f(x){\rm{d}}x} \)

(ii) \(A = 6.46\)     A1     N1

[6 marks]

a(i) and (ii).

(i) \(f'(x) = \frac{3}{{3x – 2}}\)     A1A1     N2

Note: Award A1 for numerator (3), A1 for denominator (\({3x – 2}\)) , but penalize 1 mark for additional terms.

 

(ii) \(g'(x) = 2\sin (0.5x)\)     A1A1     N2

Note: Award A1 for 2, A1 for \(\sin (0.5x)\) , but penalize 1 mark for additional terms.

[4 marks]

b(i) and (ii).

evidence of using derivatives for gradients     (M1)

correct approach     (A1)

e.g. \(f'(x) = g'(x)\) , points of intersection

\(x = 1.43\) , \(x = 6.10\)     A1A1     N2N2

[4 marks]

c.

Question

Consider the curve \(y = \ln (3x – 1)\) . Let P be the point on the curve where \(x = 2\) .

Write down the gradient of the curve at P.

[2]
a.

The normal to the curve at P cuts the x-axis at R. Find the coordinates of R.

[5]
b.
Answer/Explanation

Markscheme

gradient is \(0.6\)     A2     N2

[2 marks]

a.

at R, \(y = 0\) (seen anywhere)     A1

at \(x = 2\) , \(y = \ln 5\) \(( = 1.609 \ldots )\)     (A1)

gradient of normal \( = – 1.6666 \ldots \)     (A1)

evidence of finding correct equation of normal     A1

e.g. \(y = \ln 5 = – \frac{5}{3}(x – 2)\) , \(y = – 1.67x + c\)

\(x = 2.97\) (accept 2.96)     A1

coordinates of R are (2.97,0)     N3

[5 marks]

b.

Question

Let \(f(x) = 3\sin x + 4\cos x\) , for \( – 2\pi  \le x \le 2\pi \) .

Sketch the graph of f .

[3]
a.

Write down

(i)     the amplitude;

(ii)    the period;

(iii)   the x-intercept that lies between \( – \frac{\pi }{2}\) and 0.

[3]
b.

Hence write \(f(x)\) in the form \(p\sin (qx + r)\) .

[3]
c.

Write down one value of x such that \(f'(x) = 0\) .

[2]
d.

Write down the two values of k for which the equation \(f(x) = k\) has exactly two solutions.

[2]
e.

Let \(g(x) = \ln (x + 1)\) , for \(0 \le x \le \pi \) . There is a value of x, between \(0\) and \(1\), for which the gradient of f is equal to the gradient of g. Find this value of x.

[5]
f.
Answer/Explanation

Markscheme

 


     A1A1A1     N3

 

Note: Award A1 for approximately sinusoidal shape, A1 for end points approximately correct \(( – 2\pi {\text{, }}4)\) \((2\pi {\text{, }}4)\), A1 for approximately correct position of graph, (y-intercept \((0{\text{, }}4)\), maximum to right of y-axis).

[3 marks]

a.

(i) 5     A1     N1

(ii) \(2\pi \)  (6.28)     A1     N1

(iii) \( – 0.927\)     A1     N1

[3 marks]

b.

\(f(x) = 5\sin (x + 0.927)\) (accept \(p = 5\) , \(q = 1\) , \(r = 0.927\) )     A1A1A1     N3

[3 marks]

c.

evidence of correct approach     (M1)

e.g. max/min, sketch of \(f'(x)\) indicating roots


one 3 s.f. value which rounds to one of \( – 5.6\), \( – 2.5\), \(0.64\), \(3.8\)     A1     N2

 

[2 marks]

 

 

d.

\(k = – 5\) , \(k = 5\)     A1A1     N2

[2 marks]

e.

METHOD 1

graphical approach (but must involve derivative functions)     M1

e.g.


each curve     A1A1

\(x = 0.511\)     A2     N2

METHOD 2

\(g'(x) = \frac{1}{{x + 1}}\)     A1

\(f'(x) = 3\cos x – 4\sin x\)     \((5\cos (x + 0.927))\)     A1

evidence of attempt to solve \(g'(x) = f'(x)\)     M1

\(x = 0.511\)     A2     N2

[5 marks]

f.

Question

Let \(f(x) = \cos 2x\) and \(g(x) = \ln (3x – 5)\) .

Find \(f'(x)\) .

[2]
a.

Find \(g'(x)\) .

[2]
b.

Let \(h(x) = f(x) \times g(x)\) . Find \(h'(x)\) .

[2]
c.
Answer/Explanation

Markscheme

(a) \(f'(x) = – \sin 2x \times 2( = – 2\sin 2x)\)     A1A1     N2

Note: Award A1 for 2, A1 for \( – \sin 2x\) .

[2 marks]

a.

\(g'(x) = 3 \times \frac{1}{{3x – 5}}\) \(\left( { = \frac{3}{{3x – 5}}} \right)\)     A1A1     N2

Note: Award A1 for 3, A1 for \(\frac{1}{{3x – 5}}\) .

[2 marks]

b.

evidence of using product rule     (M1)

\(h'(x) = (\cos 2x)\left( {\frac{3}{{3x – 5}}} \right) + \ln (3x – 5)( – 2\sin 2x)\)     A1     N2 

[2 marks]

c.

Question

Let \(f(x) = A{{\rm{e}}^{kx}} + 3\) . Part of the graph of f is shown below.


The y-intercept is at (0, 13) .

Show that \(A = 10\) .

[2]
a.

Given that \(f(15) = 3.49\) (correct to 3 significant figures), find the value of k.

[3]
b.

(i)     Using your value of k , find \(f'(x)\) .

(ii)    Hence, explain why f is a decreasing function.

(iii)   Write down the equation of the horizontal asymptote of the graph f .

[5]
c(i), (ii) and (iii).

Let \(g(x) = – {x^2} + 12x – 24\) .

Find the area enclosed by the graphs of f and g .

[6]
d.
Answer/Explanation

Markscheme

substituting (0, 13) into function     M1 

e.g. \(13 = A{{\rm{e}}^0} + 3\)

\(13 = A + 3\)     A1

\(A = 10\)     AG     N0

[2 marks]

a.

substituting into \(f(15) = 3.49\)     A1

e.g. \(3.49 = 10{{\rm{e}}^{15k}} + 3\) , \(0.049 = {{\rm{e}}^{15k}}\)

evidence of solving equation     (M1)

e.g. sketch, using \(\ln \)

\(k = – 0.201\) (accept \(\frac{{\ln 0.049}}{{15}}\) )     A1     N2

[3 marks]

b.

(i) \(f(x) = 10{{\rm{e}}^{ – 0.201x}} + 3\)

\(f(x) = 10{{\rm{e}}^{ – 0.201x}} \times – 0.201\) \(( = – 2.01{{\rm{e}}^{ – 0.201x}})\)     A1A1A1     N3

Note: Award A1 for \(10{{\rm{e}}^{ – 0.201x}}\) , A1 for \( \times – 0.201\) , A1 for the derivative of 3 is zero.

(ii) valid reason with reference to derivative     R1     N1

e.g. \(f'(x) < 0\) , derivative always negative

(iii) \(y = 3\)     A1     N1

[5 marks]

c(i), (ii) and (iii).

finding limits \(3.8953 \ldots \), \(8.6940 \ldots \) (seen anywhere)     A1A1

evidence of integrating and subtracting functions     (M1)

correct expression     A1

e.g. \(\int_{3.90}^{8.69} {g(x) – f(x){\rm{d}}x} \) , \(\int_{3.90}^{8.69} {\left[ {\left( { – {x^2} + 12x – 24} \right) – \left( {10{{\rm{e}}^{ – 0.201x}} + 3} \right)} \right]} {\rm{d}}x\)

area \(= 19.5\)     A2     N4

[6 marks]

d.

Question

Let \(f(x) = \sqrt[3]{{{x^4}}} – \frac{1}{2}\).

Find \(f'(x)\).

[2]
a.

Find \(\int {f(x){\text{d}}x} \).

[4]
b.
Answer/Explanation

Markscheme

expressing \(f\) as \({x^{\frac{4}{3}}}\)     (M1)

\(f'(x) = \frac{4}{3}{x^{\frac{1}{3}}}{\text{   }}\left( { = \frac{4}{3}\sqrt[3]{x}} \right)\)     A1     N2

[2 marks]

a.

attempt to integrate \({\sqrt[3]{{{x^4}}}}\)     (M1)

eg     \(\frac{{{x^{\frac{4}{3} + 1}}}}{{\frac{4}{3} + 1}}\)

\(\int {f(x){\text{d}}x = \frac{3}{7}{x^{\frac{7}{3}}} – \frac{x}{2} + c} \)     A1A1A1     N4

[4 marks]

b.

Question

Let \(f(x) = \frac{1}{{x – 1}} + 2\), for \(x > 1\).

Let \(g(x) = a{e^{ – x}} + b\), for \(x \geqslant 1\). The graphs of \(f\) and \(g\) have the same horizontal asymptote.

Write down the equation of the horizontal asymptote of the graph of \(f\).

[2]
a.

Find \(f'(x)\).

[2]
b.

Write down the value of \(b\).

[2]
c.

Given that \(g'(1) =  – e\), find the value of \(a\).

[4]
d.

There is a value of \(x\), for \(1 < x < 4\), for which the graphs of \(f\) and \(g\) have the same gradient. Find this gradient.

[4]
e.
Answer/Explanation

Markscheme

\(y = 2\) (correct equation only)     A2     N2

[2 marks]

a.

valid approach     (M1)

eg\(\,\,\,\,\,\)\({(x – 1)^{ – 1}} + 2,{\text{ }}f'(x) = \frac{{0(x – 1) – 1}}{{{{(x – 1)}^2}}}\)

\( – {(x – 1)^{ – 2}},{\text{ }}f'(x) = \frac{{ – 1}}{{{{(x – 1)}^2}}}\)    A1     N2

[2 marks]

b.

correct equation for the asymptote of \(g\)

eg\(\,\,\,\,\,\)\(y = b\)     (A1)

\(b = 2\)     A1     N2

[2 marks]

c.

correct derivative of g (seen anywhere)     (A2)

eg\(\,\,\,\,\,\)\(g'(x) =  – a{{\text{e}}^{ – x}}\)

correct equation     (A1)

eg\(\,\,\,\,\,\)\( – {\text{e}} =  – a{{\text{e}}^{ – 1}}\)

7.38905

\(a = {{\text{e}}^2}{\text{ }}({\text{exact}}),{\text{ }}7.39\)     A1     N2

[4 marks]

d.

attempt to equate their derivatives     (M1)

eg\(\,\,\,\,\,\)\(f'(x) = g'(x),{\text{ }}\frac{{ – 1}}{{{{(x – 1)}^2}}} =  – a{{\text{e}}^{ – x}}\)

valid attempt to solve their equation     (M1)

eg\(\,\,\,\,\,\)correct value outside the domain of \(f\) such as 0.522 or 4.51,

M16/5/MATME/SP2/ENG/TZ2/09.e/M

correct solution (may be seen in sketch)     (A1)

eg\(\,\,\,\,\,\)\(x = 2,{\text{ }}(2,{\text{ }} – 1)\)

gradient is \( – 1\)     A1     N3

[4 marks]

e.

Question

Let \(f(x) = {({x^2} + 3)^7}\). Find the term in \({x^5}\) in the expansion of the derivative, \(f’(x)\).

Answer/Explanation

Markscheme

METHOD 1 

derivative of \(f(x)\)     A2

\(7{({x^2} + 3)^6}(x2)\)

recognizing need to find \({x^4}\) term in \({({x^2} + 3)^6}\) (seen anywhere)     R1

eg\(\,\,\,\,\,\)\(14x{\text{ (term in }}{x^4})\)

valid approach to find the terms in \({({x^2} + 3)^6}\)     (M1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 6 \\ r \end{array}} \right){({x^2})^{6 – r}}{(3)^r},{\text{ }}{({x^2})^6}{(3)^0} + {({x^2})^5}{(3)^1} +  \ldots \), Pascal’s triangle to 6th row

identifying correct term (may be indicated in expansion)     (A1)

eg\(\,\,\,\,\,\)\({\text{5th term, }}r = 2,{\text{ }}\left( {\begin{array}{*{20}{c}} 6 \\ 4 \end{array}} \right),{\text{ }}{({x^2})^2}{(3)^4}\)

correct working (may be seen in expansion)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 6 \\ 4 \end{array}} \right){({x^2})^2}{(3)^4},{\text{ }}15 \times {3^4},{\text{ }}14x \times 15 \times 81{({x^2})^2}\)

\(17010{x^5}\)     A1     N3

METHOD 2

recognition of need to find \({x^6}\) in \({({x^2} + 3)^7}\) (seen anywhere) R1 

valid approach to find the terms in \({({x^2} + 3)^7}\)     (M1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 7 \\ r \end{array}} \right){({x^2})^{7 – r}}{(3)^r},{\text{ }}{({x^2})^7}{(3)^0} + {({x^2})^6}{(3)^1} +  \ldots \), Pascal’s triangle to 7th row

identifying correct term (may be indicated in expansion)     (A1)

eg\(\,\,\,\,\,\)6th term, \(r = 3,{\text{ }}\left( {\begin{array}{*{20}{c}} 7 \\ 3 \end{array}} \right),{\text{ (}}{{\text{x}}^2}{)^3}{(3)^4}\)

correct working (may be seen in expansion)     (A1)

eg\(\,\,\,\,\,\)\(\left( {\begin{array}{*{20}{c}} 7 \\ 4 \end{array}} \right){{\text{(}}{{\text{x}}^2})^3}{(3)^4},{\text{ }}35 \times {3^4}\)

correct term     (A1)

\(2835{x^6}\)

differentiating their term in \({x^6}\)     (M1)

eg\(\,\,\,\,\,\)\((2835{x^6})’,{\text{ (6)(2835}}{{\text{x}}^5})\)

\(17010{x^5}\)     A1     N3

[7 marks]

Question

Let f(x) = ln x − 5x , for x > 0 .

Find f ’(x).

[2]
a.

Find f ”(x).

[1]
b.

Solve f ’(x) = f ”(x).

[2]
c.
Answer/Explanation

Markscheme

\(f’\left( x \right) = \frac{1}{x} – 5\)     A1A1 N2

[2 marks]

a.

f ”(x) = −x−2      A1 N1

[1 mark]

b.

METHOD 1 (using GDC)

valid approach      (M1)

eg 

0.558257

x = 0.558       A1 N2

Note: Do not award A1 if additional answers given.

METHOD 2 (analytical)

attempt to solve their equation f '(x) = f ”(x)  (do not accept \(\frac{1}{x} – 5 =  – \frac{1}{{{x^2}}}\))      (M1)

eg  \(5{x^2} – x – 1 = 0,\,\,\frac{{1 \pm \sqrt {21} }}{{10}},\,\,\frac{1}{x} = \frac{{ – 1 \pm \sqrt {21} }}{2},\,\, – 0.358\)

0.558257

x = 0.558       A1 N2

Note: Do not award A1 if additional answers given.

[2 marks]

c.
Scroll to Top